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Abstract: Asthma is heterogeneous but accessible biomarkers to distinguish relevant phenotypes
remain lacking, particularly in non-Type 2 (T2)-high asthma. Moreover, common clinical character-
istics in both T2-high and T2-low asthma (e.g., atopy, obesity, inhaled steroid use) may confound
interpretation of putative biomarkers and of underlying biology. This study aimed to identify volatile
organic compounds (VOCs) in exhaled breath that distinguish not only asthmatic and non-asthmatic
subjects, but also atopic non-asthmatic controls and also by variables that reflect clinical differ-
ences among asthmatic adults. A total of 73 participants (30 asthma, eight atopic non-asthma, and
35 non-asthma/non-atopic subjects) were recruited for this pilot study. A total of 79 breath samples
were analyzed in real-time using an automated portable gas chromatography (GC) device developed
in-house. GC-mass spectrometry was also used to identify the VOCs in breath. Machine learning,
linear discriminant analysis, and principal component analysis were used to identify the biomarkers.
Our results show that the portable GC was able to complete breath analysis in 30 min. A set of nine
biomarkers distinguished asthma and non-asthma/non-atopic subjects, while sets of two and of four
biomarkers, respectively, further distinguished asthmatic from atopic controls, and between atopic
and non-atopic controls. Additional unique biomarkers were identified that discriminate subjects
by blood eosinophil levels, obese status, inhaled corticosteroid treatment, and also acute upper
respiratory illnesses within asthmatic groups. Our work demonstrates that breath VOC profiling
can be a clinically accessible tool for asthma diagnosis and phenotyping. A portable GC system is a
viable option for rapid assessment in asthma.

Keywords: asthma; exhaled breath; portable gas chromatography; precision medicine

1. Introduction

Asthma is a chronic inflammatory airway disease characterized by reversible airflow
obstruction and episodic symptoms of wheezing and shortness of breath. However, asthma
is clinically heterogeneous and while many phenotypes have been described, the mech-
anisms for most remain poorly understood. Type 2 (T2) -high asthma, linked to allergic
inflammation, is the best understood endophenotype, defined by elevated Type 2 immune
responses (e.g., eosinophilia and increased exhaled nitric oxide, etc.) and a better response
to treatments like inhaled corticosteroids (ICS) and biologics targeting Type 2 cytokines [1].
In contrast, T2-low asthma represents a constellation of other phenotypes characterized
by diminished or absent Type 2 inflammation, although atopy may still co-exist. Non-
eosinophilic asthma may characterize up to 50% of asthmatic adults based on sputum
eosinophil assessment [2,3]. Further understanding of T2-low asthma and identifying
relevant biomarkers that inform underlying biology is of great interest; there currently are
no treatments that target specific phenotypes of T2-low asthma.
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Non-invasive approaches to investigate asthma biology are attractive because they
decrease burden on research participants and may lead to the identification of clinically
useful and deployable biomarkers. Breath analysis has increasingly been used to identify
discriminatory patterns of exhaled compounds associated with asthma and other airway
diseases [4,5]. To date, measurement of exhaled nitric oxide (FeNO) is the only such
biomarker validated for clinical use [6] and is largely reflective of Type 2 inflammation,
correlating with greater atopy and allergic inflammation [7]. Applications of electronic nose
(eNose) technologies have demonstrated their ability to distinguish asthmatic from healthy
subjects, as well as predict some clinical features including atopic status [8], circulating
inflammatory patterns [9], and loss of asthma control [10]. However, eNose identifies
composite signature patterns without direct ascertainment of the contributory chemical
compounds. Identifying the specific exhaled metabolites associated with particular features
of asthma would offer insights into potential biology contributing to that phenotype
for further study. For example, a recent large study used gas chromatography-mass
spectrometry (GC-MS) to identify specific exhaled compounds that distinguish eosinophilic
from neutrophilic asthma, as defined by sputum cell counts [11]. More such studies
are needed to elucidate exhaled metabolites that may serve as surrogate markers for
other clinically important asthma phenotypes and also in different populations to inform
clinical validity.

In this pilot study, we aimed to address some of these gaps by exploring in our U.S.-
based adult cohort whether exhaled breath metabolites, measured by our portable GC
system are capable to distinguish asthmatic from non-asthmatic/non-atopic and atopic non-
asthmatic (atopic control) subjects. We also hypothesized that exhaled breath metabolites
would discriminate subjects by blood eosinophil levels, obese status, and asthmatics on
inhaled corticosteroid (ICS) treatments or experiencing an upper respiratory illness within
asthmatic groups. With the detection, identification, and statistical analysis of the exhaled
breath VOCs, we demonstrate the application of a portable GC system as a potential aid to
asthma clinical diagnosis and therapeutic monitoring.

2. Results
2.1. Clinical Cohort

Asthmatic and non-asthmatic subjects were enrolled in a prospective observational
study at the University of Michigan (CAARS; NCT02887911; clinicaltrials.gov (accessed on
26 March 2021), Bethesda, MD, USA) and provided written informed consent to participate
in a longitudinal component of the study (MICROMAAP) entailing subsequent quarterly
visits for a year. The study protocols were approved by the University of Michigan
Institutional Review Board (HUM00097163 and HUM00136068). Subjects underwent
detailed baseline assessments as previously described [12], including asthma and allergy
history questionnaires and lung function testing (spirometry, methacholine challenge, and
bronchodilator reversibility). Asthma diagnosis was confirmed by spirometry with positive
methacholine challenge and/or bronchodilator reversibility, performed according to the
American Thoracic Society/European Respiratory Society guidelines [13,14]. Exclusion
criteria included significant smoking history (>10 pack-years) and acute lower respiratory
illness, asthma exacerbation and/or systemic antibiotic use within 8 weeks of the baseline
study visit. Blood was collected for complete blood count with differential cell analysis
and determination of atopic sensitization to common respiratory allergens (specific IgE to
16 aeroallergens; Phadia ImmunoCAP). Presence of at least one positive specific IgE on
this panel was considered evidence of atopy. Induced sputum was collected by inhalation
of 3% saline for 12 min and used to determine sputum inflammatory cell counts. As
summarized in Table 1, a total of 73 participants contributed 79 total breath samples.
These included 30 asthma, 8 atopic non-asthma, and 35 non-asthma/non-atopic subjects
evaluated between June 2018 and February 2020. All breath samples from MICROMAAP
subjects were collected during study visits during the morning hours; study subjects had
fasted overnight except for taking medications with water or using their prescribed inhaled
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therapies. Some exhaled air samples from control subjects (non-asthma/non-atopic) were
collected from colleagues (33 breath samples) after informing them about the study and
obtaining verbal consent. Three asthma patients who later developed upper respiratory
illness and one asthma patient who took ICS treatment were respectively sampled twice
over the course of regular study visits that occurred quarterly or in the setting of subsequent
upper respiratory illness. For the latter scenario, asthma subjects returned for a study visit
within one week of symptom onset for additional sample and data collection.

A total of 79 breath chromatograms were analyzed. Detailed description of the
portable GC device and its operation can be found in Section 4, and Section S1 in the
Supplementary Materials. After chromatogram pre-processing (see Section 4 and Section
S2 in the Supplementary Materials), approximately 90 peaks can be detected in each breath
chromatogram (Figure 1). Collectively, there were a total of 103 different peaks in the
79 chromatograms, although some of the 103 peaks could contain co-eluted VOCs. Finally,
through machine learning, linear discriminant analysis (LDA), and principal component
analysis (PCA) were used for biomarker selection and statistical analyses (see details in
Section S3 in the Supplementary Materials).
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Table 1. Summary of recruited subjects, the total number of breath samples collected and number available for each clinical characteristic analyzed. # post-albuterol, mean ± standard
deviation. FEV1, forced expiratory volume in 1 s % predicted; ICS, inhaled corticosteroid; BMI, body-mass index.

Category Non-Asthma,
Non-Atopic

Non-Asthma,
Atopic

Asthma

Total FEV1/FVC # FEV1(% pred) # ICS
Treatment

No ICS
Treatment

Obese
(BMI ≥ 30)

Non-Obese
(BMI < 30)

Blood
Eosinophils ≥

0.3 × 109/L

Blood
Eosinophils
< 0.3 × 109/L

Upper
Respiratory

Illness

No Upper
Respiratory Illness

Number of subjects 35 8 30
0.78 ± 0.12 97.7 ± 18.7

20 13 17 17 17 17 3
Same 3 subjects as
those with upper
respiratory illness

Number of breath
samples analyzed 37 8 34 21 13 17 17 17 17 3 3

Age, yrs
(range)

40.9
(23–71)

29.4
(19–43)

40.2
(18–72)

Sex, % female 75 50 69
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2.2. Biomarkers to Distinguish Asthma and Non-Asthma

Not all peaks may be relevant to asthma, since some peaks may be from normal
metabolic activities, other conditions that a patient may have, or exogenous factors (indoor
air background, smoking, and use of consumer products, etc.) [15]. Therefore, it is critical
to determine which subset of the peaks is most responsible for the differences observed
between asthma and non-asthma groups. For selecting the optimal subset of peaks (i.e.,
biomarkers), 45 chromatograms from asthma and non-asthma/non-atopic were used as
the training set, whereas the remaining 26 chromatograms were used as the testing set.
As detailed in Section S3 of the Supplementary Materials, optimal peak subset (peak ID:
7, 32, 50, 51, 69, 73, 80, 85, 93 listed in Table 2) is identified through LDA, which yields
the maximum classification accuracy of 94.4% and the maximum boundary distance to
distinguish asthma and non-asthma. Those biomarkers are mainly from alkane families
(see Table 3), some of which are same as or similar to biomarkers previously reported, such
as Compound 32 (Heptane, 2,4-dimethyl), Compound 50 (Heptane, 2,2,4-trimethyl), Com-
pound 51 (Octane, 3,3-dimethyl), Compound 69 (Heptane, 2,3,5-trimethyl-), Compound
73 (Decane, 2,4,6-trimethyl), and Compound 93 (Decane, 2,6,6-trimethyl) [16–23]. The
details of the biomarker discovery process can be found in Section S3 of the Supplementary
Materials. Figure 2 shows the PC plot of the training and the combined (training and
testing) set. The corresponding statistics are given in Table S3.

Table 2. Summary of the different study groups and respective identified biomarker IDs.

Study Group Biomarker Peak ID

Asthma vs. non-asthma/atopic 6, 67

Non-asthma/non-atopic vs. non-asthma/atopic 7, 32, 50, 54

Asthma clinical variables

Inhaled corticosteroid treatment 59, 62, 86, 91

Obesity 8, 28, 37, 54, 58

Blood eosinophils level 34, 51, 60, 91

Upper respiratory illness 1, 2, 4, 5, 8

Table 3. Summary of the chemical names, IDs, and retention time of all the biomarkers.

Peak ID Compound Name Peak ID Compound Name

1 2-Methylbutane, 54 2,3,6-Trimethylheptane

2 Isoprene 58 2,6-Dimethyl (S,E)-4-octene,

4 1-Cyclopropaneethanol 59 1-Butyl-1-methyl-2-propyl- cyclopropane

5 4-Methyl-1-pentene 60 1-Fluorododecane

6 2-Methylpentane 62 Chloroacetic acid dodecyl ester

7 2-methyl-1-pentene 67 2,5,9-Trimethyldecane

8 n-Hexane 69 2,3,5-Trimethylheptane

28 2,3,4-Trimethylpentane 73 2,4,6-Trimethyldecane

32 2,4-Dimethylheptane 80 2,6,10,14-Tetramethylheptadecane

34 2-Octene 85 2,8-Dimethylundecane

37 2-Methyloctane 86 3,6-Dimethylundecane

50 2,2,4-Trimethylheptane 91 2,6,6-Trimethyldecane

51 3,3-Dimethyloctane 93 5-Methyl-5-propylnonane
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Figure 2. PCA plots using the optimal 9-peak subset (9 biomarkers) for distinguishing asthma from non-asthma/non-atopic
subjects. (A) Training set. (B) Training set plus testing set. Asthma and non-asthma/non-atopic are denoted as red circles
and black crosses, respectively. The yellow line marks the position of the boundary. The peak IDs and their chemical names
of the nine biomarkers can be found in Table 2.

2.3. Biomarkers to Distinguish Atopic Subjects

Figure S7 shows how the PCA plot would look like for asthma, non-asthma/non-
atopic, and non-asthma atopic subjects if we used only the nine aforementioned biomarkers
(i.e., peak IDs: 7, 32, 50, 51, 69, 73, 80, 85, 93 in Table 2). The distribution of the atopic
subjects was found to be biased on the asthma side, implying that the pattern of these nine
biomarkers from the atopic subjects look more like asthma. Given that atopy is a common
underlying feature in asthma, this is unsurprising. Thus, using those nine biomarkers alone,
it was difficult to distinguish between asthma and atopic, and between non-asthma/non-
atopic and non-asthma/atopic subjects. Therefore, new sets of biomarkers may be needed
for further classification.

In this study, all of the eight non-asthma/atopic subjects were used in the training
set (due to the limited number of subjects), along with another eight randomly selected
asthma subjects and eight non-asthma/non-atopic subjects. The remaining asthma subjects
and asthma/non-atopic subjects were used as the testing set for validation. The PCA
plots are presented in Figure 3, showing significant improvement in distinguishing atopy
from asthma and from non-asthma/non-atopic. Two new biomarkers (peak IDs: 6, 67)
yielded the maximum classification accuracy of 90.5% and the maximum boundary dis-
tance for the discrimination between asthma and non-asthma/atopic subjects. Four other
biomarkers (peak IDs: 7, 32, 50, 54) gave the maximum classification accuracy of 93.2%
with the maximum boundary distance to distinguish the non-asthma/atopic from the
non-asthma/non-atopic group. The corresponding statistics are given in Table S4. Based
on the above discussion, atopic subjects can be identified through two steps. First, the
nine biomarkers (7, 32, 50, 51, 69, 73, 80, 85, 93) are applied to separate out “asthma” and
“non-asthma/non-atopic” (note that non-asthma/atopic subjects might be mis-classified
as asthma or non-asthma/non-atopic in this step as shown in Figure S7). Then two new
sets of biomarkers (6, 67) and (7, 32, 50, and 54) are used to further identify atopic from the
“asthma” group and “non-asthma/non-atopic” group, respectively.
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Figure 3. Classification among asthma (red circles), and non-asthma/non-atopic (black crosses), and non-asthma atopic (blue
asterisks) subjects. (A) PCA plot for the asthma and atopic subjects in the training set using a new set of biomarkers listed in
Table 1. (B) Corresponding PCA plot for the training set and the testing set combined. (C) PCA plot for the non-asthma
atopic and non-asthma/non-atopic subjects in the training set using the biomarkers listed in Table 1. (D) Corresponding
PCA plot for the training set and the testing set combined. The yellow line marks the position of the boundary.

2.4. Biomarkers for Other Asthma Sub-Categories

Using all the subjects in each sub-category and the same procedures described pre-
viously, we then identified exhaled biomarkers for the other asthma characteristics of
interest, which reflect clinical factors associated with differences in asthma phenotypes
and outcomes (ICS treatment, obesity, eosinophil level, and upper respiratory illness; see
Table 2). The corresponding PCA plots and the statistics are given in Figure 4 and Table
S5, respectively. Particularly, in Figure 4D we show the longitudinal analysis of three
asthma patients who later developed upper respiratory illness (URI), demonstrating ex-
haled breath markers of acute URIs. Overall, the ability to sub-categorize and monitor
patients’ trajectories with a non-invasive diagnostic method would provide physicians
a tool for streamlined detection and monitoring of asthma phenotypes and outcomes to
potentially help define the right treatment protocol.
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Figure 4. PCA plots for biomarkers of clinically relevant asthma characteristics (A) inhaled corticosteroid (ICS) treatment,
(B) obesity, (C) blood eosinophils (EOS) level, and (D) upper respiratory illness. The red symbols denote data for the
positive groups, i.e., asthma subjects on ICS treatment, obesity (BMI ≥ 30), high EOS level (blood EOS ≥ 0.3), and upper
respiratory illness. The black symbols denote the corresponding negative controls, i.e., asthma subjects not on ICS treatment,
BMI < 30, low EOS (blood EOS < 0.3), or absent acute upper respiratory illness (baseline sample). The boundary lines are
marked in yellow. The corresponding biomarkers are listed in Tables 1 and 2. The dashed lines show the trajectories in the
longitudinal analysis for three asthma patients who later developed upper respiratory illness. The subject IDs are given by
the numbers near the crosses. The PCA plot for both training and testing sets for ICS treatment is given in Figure S8.

3. Discussion

Non-invasive approaches to understand airway biology in different asthma pheno-
types is of great interest, and measurement of VOCs are considered a promising tool [24].
Exhaled breath analysis has advantages over blood and sputum sampling because it is truly
non-invasive, easily accessible, low cost, and potentially provides instant results. There is
currently no clinically applicable measurement of biomarkers for real-time diagnosis or
tracking of asthma phenotypes other than FeNO, which is reflective of eosinophilic airway
inflammation and clinical outcomes related to this phenotype. In contrast, non-invasive
biomarkers of non-eosinophilic asthma, which encompasses a variety of sub-phenotypes,
remain a clinical need. In this pilot study, we expand upon earlier work by showing that
exhaled breath analysis can reveal VOCs that discriminate clinically important features
of asthma and in the process potentially shed further insight into the airway metabolic
basis of such differences. These include distinguishing atopic/non-asthma from asthmatic
status, as well as obesity-associated asthma, a phenotype that does not always respond
to usual therapies. We also demonstrate VOCs that distinguish asthmatics taking or not
taking inhaled corticosteroids. These factors if not considered may impact interpretation
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of VOC biomarkers and how they inform further study of asthma biology and associated
differences in treatment outcomes.

We demonstrate here that a portable GC device can discriminate and identify specific
exhaled biomarker compounds that distinguish clinical features of asthma in real-time
(which saves time and complexity involved in sample preparation and storage) with high ac-
curacy. Potentially a portable GC analysis system could be developed for home use, which
may allow the end user to collect and analyze their breath at home to closely monitor their
health condition. To our knowledge, this is the first demonstration of a portable real-time
GC system to study breath VOCs in asthma stratified by the additional factors examined,
which were chosen for their clinical importance and link to differences in asthma pheno-
type or outcomes. As previously mentioned these factors might affect interpretation of
specific VOCs in asthma. For example, among the nine biomarkers (7, 32, 50, 51, 69, 73, 80,
85, 93) delineating asthma from non-asthma/non-atopic subjects, three of them (7, 32, 50)
overlapped with the biomarkers distinguishing non-asthma/atopic from non-asthma/non-
atopic subjects. This highlights that background atopy needs to be considered when
interpreting such results, since allergic sensitization is common in asthma. A recent study
reported that eNose breathprints could classify atopic and non-atopic subjects with asthma,
but specific VOCs contributing to the distinction were not identifiable by this methodol-
ogy [8]. Notably, we identified two additional compounds, 6 (2-methyl- pentane) and 67
(2,5,9-trimethyldecane), that distinguished asthmatic from non-asthmatic/atopic subjects.
Same or similar compounds to these (such as 2-methylpentane, 2,4-dimethylpentane, and
branched C13 alkanes like 2,3,6-trimethyldecane) were previously reported as markers to
distinguish asthma and non-asthma [22,23,25]. Our data suggest that some of these VOCs
may further distinguish atopic asthmatic subjects from atopic subjects without asthma.

We identified exhaled biomarkers for other asthma-relevant traits by the same ap-
proach [16]. For example, obesity-associated asthma is a significant clinical management
problem. Current biomarkers to predict potential response to asthma therapies (e.g.,
inhaled steroids) do not perform as well in obese patients and correlate poorly with
sputum markers of eosinophilic inflammation [26]. In our exploratory study we iden-
tified 5 compounds that distinguished obese and non-obese asthmatics. None of these
overlapped with biomarker profiles for other group comparisons, except for one com-
pound (54, 2,3,6-trimethylheptane) that also distinguished non-asthmatic/atopic from
non-asthmatic/non-atopic subjects. The other non-overlapping VOCs identified may be
biomarkers of processes that differentiate obese asthma from other phenotypes. Compound
58 (2,6-dimethyl-(S,E)-4-octene) in our results is related to 1-octene, a potential marker of
oxidative stress, which an earlier study found to be associated with obese status in children
compared to lean controls [27]. Breath alkanes are a product of lipid peroxidation [28], and
products of lipid peroxidation are known to be associated with airway inflammation and
increased asthma severity [29]. We found only one study in the literature that specifically
examined breath metabolite profiles in obese and non-obese asthmatics [30]. However,
this study used exhaled breath condensate and NMR-based metabolomics, and thus the
specific metabolite differences identified in that study cannot be directly compared to the
VOCs we identified as distinguishing obese and non-obese asthmatics.

Distinguishing eosinophilic and non-eosinophilic asthma is important because of the
therapeutic implications. Eosinophilic asthma, defined by blood or sputum eosinophil
numbers, is more responsive to ICS treatment, and as such inhaled steroids are more
likely to be prescribed to such patients. This may confound analysis and interpretation
of VOCs related to eosinophilic or non-eosinophilic asthma. Moreover, sputum-based
determination of eosinophilic asthma is difficult and remains largely a research method.
Blood eosinophil counts are often used as a surrogate clinically, but few if any studies have
examined breath VOCs between asthmatics categorized by clinically used definitions of
high or low blood eosinophils. One study reported 2,6,10-trimethyldodecane as an exhaled
biomarker for eosinophilic airway inflammation, which was defined by sputum eosinophil
measurements [16]. For comparison, we identified a similar compound, 1-fluorododecane,
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as one of the biomarkers distinguishing our asthmatics with high or low blood eosinophils
counts. A more recent study also used sputum to categorize asthmatics with or without
eosinophilic inflammation for breath VOC comparisons [11]. None of the four VOCs we
identified as distinguishing asthmatics by blood eosinophil counts overlapped with the
findings of Ibrahim et al. [16] and Schleich et al. [11] who used sputum-based stratification.
It is known that sputum and blood eosinophil counts are only modestly correlated in
asthmatics, and thus the differences between our findings and others reflect different
definitions of eosinophilic and non-eosinophilic asthma. Our findings also suggest that the
VOCs that we identified may reflect additional biological processes relevant to the presence
or absence of asthma-associated systemic eosinophilia.

Inhaled corticosteroids (ICS) are commonly prescribed for asthma and are consid-
ered to be more effective for Type 2-driven (eosinophilic) asthma. Inhaled corticosteroid
use could also contribute to increased sputum neutrophils, another inflammatory pheno-
type [31]. Thus, ICS use may confound interpretation of VOCs in asthma. We identified
4 compounds that delineated asthmatics who were or were not on regular ICS therapy.
Three of these were uniquely associated with the biomarker profile for this comparison,
while 91 (2,6,6-trimethyldecane) also appeared in the biomarker profile that distinguished
high/low blood eosinophils. Whether the other three compounds are related to products
found in inhaled corticosteroid preparations or reflect aspects of ICS effects or metabolism
in the airways will require further investigation. Schleich et al. [11] examined the influence
of ICS treatment on the breath VOCs that distinguished asthma sputum inflammatory
profiles in their study. It was noted that using five of the VOCs identified, which included
differentiation of neutrophilic asthma from other phenotypes, it was not possible to distin-
guish ICS-treated from non-ICS-using asthmatics in their cohort. One of these compounds
(undecane) was also identified in our study (the related compound undecane 3,6-dimethyl)
as part of the unique biomarker profile distinguishing asthmatics on or not on regular ICS
therapy. Thus, interpretation of VOCs associated with particular inflammation patterns
in asthma may be confounded by concurrent treatments for the disease such as ICS. We
also identified cyclopropane and chloroacetic acid as unique biomarkers distinguishing
ICS users and non-users in our cohort. These two VOCs may or may not directly relate to
asthma airway biology. Nonetheless, we speculate they may serve as potential biomarkers
of actual ICS use by patients.

Lastly, we explored whether exhaled breath markers might identify asthmatic subjects
experiencing acute upper respiratory illness (URI). Longitudinal analysis of three asthma
patients revealed that volatile metabolic changes in exhaled breath distinguished URI state
from baseline non-ill state in these patients. Interestingly, the biomarker profile consisted
of five compounds that did not appear in the other biomarker profiles for our other
group comparisons. Although Larstad et al. [20] found that isoprene may be negatively
associated with asthma, others have reported the opposite [17] and we found isoprene to
be one of the biomarkers that discriminated active upper respiratory illness in our affected
asthma patients. Isoprene has been associated with several disease states, thought to
relate to cholesterol biosynthesis pathways and is a byproduct of lipid peroxidation [32],
thus potentially indicative of increased inflammation. Other VOCs in this respiratory
illness-related profile (e.g., 1-cyclopropaneethanol) could reflect escalation of inhaled
bronchodilator treatments and components of such therapies. Further longitudinal analysis
in more affected patients is needed to follow up this preliminary observation.

Strengths of our study are the demonstration that a portable GC system can be
applied to investigate exhaled VOC patterns in real-time and identify specific compounds
associated not just with asthmatic state, but also those associated with clinical variables that
reflect differences in asthma biology, treatment approach or outcomes. However, this was a
pilot proof-of-concept study with only 73 total participants, and our asthma sub-categories
had small, if balanced, numbers for comparisons. The major limitation of the study is lack of
independent validation groups. A much larger groups of participants are needed to further
validate our methods and preliminary findings. However, our preliminary results are
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encouraging in its demonstration that somewhat unique breath patterns and specific VOCs
may be able to discriminate certain asthma sub-types. Identifying specific compounds,
rather than just an overall breathprint, also provides important hypothesis-generating
information to inform further mechanistic studies of underlying airway pathobiology. This
would include how other products of lipid peroxidation, such as the branched alkanes
identified in our study and others, contribute to or reflect pathways of airway inflammation
involving membrane lipids in asthma [29]. Another limitation comes from the portable
GC itself. In order to maintain portability and rapid analysis time, it uses only a 10-m long
column and 10 min of separation time. Consequently, it has lower separation capability
than benchtop GC that usually uses a 30 m long column and 30–60 min of separation time.
In the future, separation capability can be enhanced by developing 2-dimensional GC.
Finally, while our vapor detector (µPID) used in this study is very sensitive already [33],
recent improvement shows that its sensitivity can be further increased approximately
10-fold. Implementation of the new version of the vapor detector will certainly help detect
those VOCs having extremely low concentrations in breath.

In conclusion, exhaled breath VOC profiling is a clinically accessible tool for asthma
diagnosis and phenotype assessment, that in combination with other tools, such as nu-
clear magnetic resonance spectroscopy of exhaled breath condensate, may offer a more
comprehensive breathomics approach to asthma evaluation [34]. We demonstrate that the
proposed portable GC system is a viable option for rapid real-time assessment in asthma
that could be further scaled to point-of-care devices for breath phenotyping in clinical trials
as well as in the outpatient clinic.

4. Materials and Methods
4.1. Description of the Portable GC Device

The portable GC system used in this study has been reported in our previous work [35,36].
Briefly, as shown in Figure 5A, the GC consists of a thermal desorption tube loaded with
CarbopackTM X and B, a micro-thermal injector loaded with CarbopackTM X and B, one
10 m long Agilent J&W DB-1ms, and a micro-photoionization detector. The entire device
was housed in a customized plastic case (see Figure 5C) and had a total weight less than 3
kg. LabVIEWTM based codes were developed in-house for the user interface, and device
control and automation. The detailed description of the material used, microfabricated
components, the preparation of the thermal desorption tube and the column are presented
in Sections S1.1 and S1.2 of the Supplementary Materials.

4.2. Exhaled Breath Collection and Analysis

Subjects were asked to orally exhale into and fill a 1 L Tedlar bag through a mouthpiece
connected to a one-way valve and a Nafion filter in series, as shown in Figure 5B. The
one-way valve stops the flow back to the patient mouth, and the Nafion filter is to absorb
the moisture content in the breath. The process usually takes about a few minutes. The
breath analysis took place either in-situ immediately after the breath sample collection or
within 24 h of breath collection. The Tedlar bags were stored under ambient condition
until analyzed. During the breath analysis, the Tedlar bag was connected to the sampling
port of the portable GC (Figure 5C). The total assay time was 30 min, including 5 min of
breath sampling time from the Tedlar bag at a flow rate of 70 mL/min (see the blue path
in Figure 5A), 5 min of desorption/transfer time, 10 min of chromatographic separation
time (see the orange path in Figure 5A), and 10 min of GC system cleaning time. The
detail about the GC system operation is presented in Section S1.3 and also reported in our
previous work [35,36].
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4.3. Chromatogram Processing and Statistical Analysis

Chromatogram preprocessing is critical prior to actual breath analysis. In this work,
baseline correction, noise reduction, normalization, peak detection, peak area extraction,
and chromatogram aligning is performed prior to the subsequent machine learning and
statistical analysis. More detailed description for each step is presented in Section S2 in the
Supplementary Materials.

Through machine learning, a subset of peaks (VOCs) were selected as the biomarkers
to discriminate between asthma and non-asthma/non-atopic, and among various asthma
subcategories based on clinically important asthma characteristics. The statistical analysis
method is adapted from our previously published approach [35] based on linear discrimi-
nant analysis (LDA) and principal component analysis (PCA) with significant improvement
in computation efficiency (Section S3.3.2). The detailed description is elaborated in Section
S3 in the Supplementary Materials.

4.4. Identification of VOCs Using Mass Spectrometry

The outlet of the portable GC device (i.e., the outlet of the photoionization detector)
was coupled to a Thermo Scientific Single Quadrupole Mass Spectrometer (ISQTM Series)
for chemical identification of the VOCs in the breath. C13 was used as a standard sample for
MS calibration. The NIST 2014 library was used for the identification of breath compounds.
The results were analyzed with ChromeleonTM 7 Software provided by Thermo Fisher
Scientific, Waltha, MA, USA.
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Supplementary Materials: The Supplementary Materials are available online at https://www.mdpi.
com/article/10.3390/metabo11050265/s1. Section S1: Portable GC Description and Operation,
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Author Contributions: Conceived and designed the experiments: R.S., Y.J.H., X.F. Clinical supervi-
sion and advice: Y.J.H., N.S., L.A.B. Technical supervision and advice: Y.J.H., X.F. Performing study
procedures, data collection, and analysis: R.S., N.S., L.A.B., W.Z. Analyzed the data: W.Z., R.S., M.Z.,
X.F., Contributed reagents/materials/analysis tools/patient recruitment/breath sample collection:
R.S., W.Z., M.Z., N.S., L.A.B., Y.J.H., X.F. Wrote the paper: R.S., W.Z., Y.J.H., X.F. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Beijing Institute for Collaborative Innovation and the gift
fund from NGK Spark Plugs, both are via the University of Michigan (X.F.) and by National Institutes
of Health (R01AI129958) (Y.J.H.).

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Institutional Review Board of the University of
Michigan (HUM00097163 and HUM00136068; ongoing approval dates 9/17/2020 and 12/10/2020,
respectively).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data are available on request from the corresponding authors due
to ongoing study.

Acknowledgments: The authors thank the support from Flux HPC Cluster provided by the Uni-
versity of Michigan Office of Research and Advanced Research Computing–Technology Services
(ARC-TS), and Analytical Chemistry Lab at the University of Michigan Biological Station at Pellston,
Michigan, for using their mass spectrometry facility. We thank the subjects who participated in our
University of Michigan CAARS/MICROMAAP studies and who contributed samples and data for
this analysis.

Conflicts of Interest: X.F. is a co-inventor of the photo-ionization detector technology used in this
article. The related IP is licensed to Nanova. X.F. serves as a paid consultant to Nanova.

References
1. Chung, K.F. Asthma phenotyping: A necessity for improved therapeutic precision and new targeted therapies. J. Intern. Med.

2016, 279, 192–204. [CrossRef]
2. Douwes, J.; Gibson, P.; Pekkanen, J.; Pearce, N. Non-eosinophilic asthma: Importance and possible mechanisms. Thorax 2002, 57,

643–648. [CrossRef]
3. McGrath, K.W.; Icitovic, N.; Boushey, H.A.; Lazarus, S.C.; Sutherland, E.R.; Chinchilli, V.M.; Fahy, J.V. A large subgroup of

mild-to-moderate asthma is persistently noneosinophilic. Am. J. Respir. Crit. Care Med. 2012, 185, 612–619. [CrossRef] [PubMed]
4. Montuschi, P.; Santonico, M.; Mondino, C.; Pennazza, G.; Mantini, G.; Martinelli, E.; Capuano, R.; Ciabattoni, G.; Paolesse, R.; Di

Natale, C.; et al. Diagnostic performance of an electronic nose, fractional exhaled nitric oxide, and lung function testing in asthma.
Chest 2010, 137, 790–796. [CrossRef]

5. Santini, G.; Mores, N.; Penas, A.; Capuano, R.; Mondino, C.; Trové, A.; Macagno, F.; Zini, G.; Cattani, P.; Martinelli, E.; et al.
Electronic nose and exhaled breath NMR-based metabolomics applications in airways disease. Curr. Top. Med. Chem. 2016, 16,
1610–1630. [CrossRef] [PubMed]

6. Dweik, R.A.; Boggs, P.B.; Erzurum, S.C.; Irvin, C.G.; Leigh, M.W.; Lundberg, J.O.; Olin, A.-C.; Plummer, A.L.; Taylor, D.R. An
official ATS clinical practice guideline: Interpretation of Exhaled Nitric Oxide Levels (FeNO) for clinical applications. Am. J.
Respir. Crit. Care Med. 2011, 184, 602–615. [CrossRef] [PubMed]

7. Dweik, R.A.; Sorkness, R.L.; Wenzel, S.; Hammel, J.; Curran-Everett, D.; Comhair, S.A.A.; Bleecker, E.; Busse, W.; Calhoun, W.J.;
Castro, M.; et al. Use of exhaled nitric oxide measurement to identify a reactive, at-risk phenotype among patients with asthma.
Am. J. Respir. Crit. Care Med. 2010, 181, 1033–1041. [CrossRef]

8. Abdel-Aziz, M.I.; Brinkman, P.; Vijverberg, S.J.; Neerincx, A.H.; de Vries, R.; Dagelet, Y.W.; Riley, J.H.; Hashimoto, S.; Montuschi,
P.; Chung, K.F.; et al. eNose breath prints as a surrogate biomarker for classifying patients with asthma by atopy. J. Allergy Clin.
Immunol. 2020, 146, 1045–1055. [CrossRef]

9. Brinkman, P.; Wagener, A.H.; Hekking, P.P.; Bansal, A.T.; Maitland-van der Zee, A.H.; Wang, Y.; Weda, H.; Knobel, H.H.; Vink,
T.J.; Rattray, N.J.; et al. Identification and prospective stability of electronic nose (eNose)-derived inflammatory phenotypes in
patients with severe asthma. J. Allergy Clin. Immunol. 2019, 143, 1811–1820.e7. [CrossRef]

https://www.mdpi.com/article/10.3390/metabo11050265/s1
https://www.mdpi.com/article/10.3390/metabo11050265/s1
http://doi.org/10.1111/joim.12382
http://doi.org/10.1136/thorax.57.7.643
http://doi.org/10.1164/rccm.201109-1640OC
http://www.ncbi.nlm.nih.gov/pubmed/22268133
http://doi.org/10.1378/chest.09-1836
http://doi.org/10.2174/1568026616666151223113540
http://www.ncbi.nlm.nih.gov/pubmed/26693732
http://doi.org/10.1164/rccm.9120-11ST
http://www.ncbi.nlm.nih.gov/pubmed/21885636
http://doi.org/10.1164/rccm.200905-0695OC
http://doi.org/10.1016/j.jaci.2020.05.038
http://doi.org/10.1016/j.jaci.2018.10.058


Metabolites 2021, 11, 265 14 of 15

10. Brinkman, P.; Van De Pol, M.A.; Gerritsen, M.G.; Bos, L.D.; Dekker, T.; Smids, B.S.; Sinha, A.; Majoor, C.J.; Sneeboer, M.M.; Knobel,
H.H.; et al. Exhaled breath profiles in the monitoring of loss of control and clinical recovery in asthma. Clin. Exp. Allergy 2017, 47,
1159–1169. [CrossRef]

11. Schleich, F.N.; Zanella, D.; Stefanuto, P.-H.; Bessonov, K.; Smolinska, A.; Dallinga, J.W.; Henket, M.; Paulus, V.; Guissard, F.; Graff,
S.; et al. Exhaled volatile organic compounds are able to discriminate between neutrophilic and eosinophilic asthma. Am. J. Respir.
Crit. Care Med. 2019, 200, 444–453. [CrossRef]

12. Begley, L.; Madapoosi, S.; Opron, K.; Ndum, O.; Baptist, A.; Rysso, K.; Erb-Downward, J.R.; Huang, Y.J. Gut microbiota
relationships to lung function and adult asthma phenotype: A pilot study. BMJ Open Respir. Res. 2018, 5, e000324. [CrossRef]
[PubMed]

13. Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.;
McCarthy, K.; McCormack, M.C.; et al. Standardization of spirometry 2019 update. An official american thoracic society and
european respiratory society technical statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [CrossRef] [PubMed]

14. Coates, A.L.; Wanger, J.; Cockcroft, D.W.; Culver, B.H.; Carlsen, K.-H.; Diamant, Z.; Gauvreau, G.; Hall, G.L.; Hallstrand, T.S.;
Horvath, I.; et al. ERS technical standard on bronchial challenge testing: General considerations and performance of methacholine
challenge tests. Eur. Respir. J. 2017, 49, 1601526. [CrossRef] [PubMed]

15. Blanchet, L.; Smolinska, A.; Baranska, A.; Tigchelaar, E.; Swertz, M.; Zhernakova, A.; Dallinga, J.W.; Wijmenga, C.; Van Schooten,
F.J. Factors that influence the volatile organic compound content in human breath. J. Breath Res. 2017, 11, 016013. [CrossRef]

16. Ibrahim, B.; Basanta, M.; Cadden, P.; Singh, D.; Douce, D.; Woodcock, A.; Fowler, S.J. Non-invasive phenotyping using exhaled
volatile organic compounds in asthma. Thorax 2011, 66, 804–809. [CrossRef]

17. Dragonieri, S.; Schot, R.; Mertens, B.J.; Le Cessie, S.; Gauw, S.A.; Spanevello, A.; Resta, O.; Willard, N.P.; Vink, T.J.; Rabe, K.F.;
et al. An electronic nose in the discrimination of patients with asthma and controls. J. Allergy Clin. Immunol. 2007, 120, 856–862.
[CrossRef] [PubMed]

18. Cavaleiro Rufo, J.; Madureira, J.; Oliveira Fernandes, E.; Moreira, A. Volatile organic compounds in asthma diagnosis: A
systematic review and meta-analysis. Allergy 2016, 71, 175–188. [CrossRef]

19. Pereira, J.; Porto-Figueira, P.; Cavaco, C.; Taunk, K.; Rapole, S.; Dhakne, R.; Nagarajaram, H.; Câmara, J.S. Breath analysis as a
potential and non-invasive frontier in disease diagnosis: An overview. Metabolites 2015, 5, 3–55. [CrossRef]

20. Lärstad, M.A.E.; Torén, K.; Bake, B.; Olin, A.-C. Determination of ethane, pentane and isoprene in exhaled air ? effects of
breath-holding, flow rate and purified air. Acta Physiol. 2007, 189, 87–98. [CrossRef]

21. Azim, A.; Barber, C.; Dennison, P.; Riley, J.; Howarth, P. Exhaled volatile organic compounds in adult asthma: A systematic
review. Eur. Respir. J. 2019, 54, 1900056. [CrossRef] [PubMed]

22. Smolinska, A.; Klaassen, E.M.M.; Dallinga, J.W.; Van De Kant, K.D.G.; Jobsis, Q.; Moonen, E.J.C.; Van Schayck, O.C.P.; Dompeling,
E.; Van Schooten, F.J. Profiling of volatile organic compounds in exhaled breath as a strategy to find early predictive signatures of
asthma in children. PLoS ONE 2014, 9, e95668. [CrossRef] [PubMed]

23. Caldeira, M.; Barros, A.S.; Bilelo, M.J.; Parada, A.; Câmara, J.D.S.; Rocha, S.M. Profiling allergic asthma volatile metabolic patterns
using a headspace-solid phase microextraction/gas chromatography based methodology. J. Chromatogr. A 2011, 1218, 3771–3780.
[CrossRef] [PubMed]

24. García-Marcos, L.; Edwards, J.; Kennington, E.; Aurora, P.; Baraldi, E.; Carraro, S.; Gappa, M.; Louis, R.; Moreno-Galdó, A.; Peroni,
D.G.; et al. Priorities for future research into asthma diagnostic tools: A PAN-EU consensus exercise from the European asthma
research innovation partnership (EARIP). Clin. Exp. Allergy 2017, 48, 104–120. [CrossRef]

25. Dallinga, J.W.; Robroeks, C.M.H.H.T.; Van Berkel, J.J.B.N.; Moonen, E.J.C.; Godschalk, R.W.L.; Jöbsis, Q.; Dompeling, E.; Wouters,
E.F.M.; Van Schooten, F.J. Volatile organic compounds in exhaled breath as a diagnostic tool for asthma in children. Clin. Exp.
Allergy 2009, 40, 68–76. [PubMed]

26. Lugogo, N.; Green, C.L.; Agada, N.; Zhang, S.; Meghdadpour, S.; Zhou, R.; Yang, S.; Anstrom, K.J.; Israel, E.; Martin, R. Obesity’s
effect on asthma extends to diagnostic criteria. J. Allergy Clin. Immunol. 2018, 141, 1096–1104. [CrossRef]

27. Alkhouri, N.; Eng, K.; Cikach, F.; Patel, N.; Yan, C.; Brindle, A.; Rome, E.; Hanouneh, I.; Grove, D.; Lopez, R.; et al. Breathprints of
childhood obesity: Changes in volatile organic compounds in obese children compared with lean controls. Pediatr. Obes. 2015, 10,
23–29. [CrossRef]

28. Van Gossum, A.; Decuyper, J. Breath alkanes as an index of lipid peroxidation. Eur. Respir J. 1989, 2, 787–791.
29. Wood, L.; Gibson, P.; Garg, M. Biomarkers of lipid peroxidation, airway inflammation and asthma. Eur. Respir. J. 2003, 21, 177–186.

[CrossRef]
30. Maniscalco, M.; Paris, D.; Melck, D.J.; D’Amato, M.; Zedda, A.; Sofia, M.; Stellato, C.; Motta, A. Coexistence of obesity and asthma

determines a distinct respiratory metabolic phenotype. J. Allergy Clin. Immunol. 2017, 139, 1536–1547.e5. [CrossRef]
31. Boulet, L.-P. Effects of steroid therapy on inflammatory cell subtypes in asthma. Thorax 2010, 65, 374–376. [CrossRef]
32. Salerno-Kennedy, R.; Cashman, K.D. Potential applications of breath isoprene as a biomarker in modern medicine: A concise

overview. Wien. Klin. Wochenschr. 2005, 117, 180–186. [CrossRef] [PubMed]
33. Zhu, H.; Nidetz, R.; Zhou, M.; Lee, J.; Buggaveeti, S.; Kurabayashi, K.; Fan, X. Flow-through microfluidic photoionization

detectors for rapid and highly sensitive vapor detection. Lab Chip 2015, 15, 3021–3029. [CrossRef] [PubMed]
34. Motta, A.; Paris, D.; Melck, D.; De Laurentiis, G.; Maniscalco, M.; Sofia, M.; Montuschi, P. Nuclear magnetic resonance-based

metabolomics of exhaled breath condensate: Methodological aspects. Eur. Respir. J. 2012, 39, 498–500. [CrossRef]

http://doi.org/10.1111/cea.12965
http://doi.org/10.1164/rccm.201811-2210OC
http://doi.org/10.1136/bmjresp-2018-000324
http://www.ncbi.nlm.nih.gov/pubmed/30271607
http://doi.org/10.1164/rccm.201908-1590ST
http://www.ncbi.nlm.nih.gov/pubmed/31613151
http://doi.org/10.1183/13993003.01526-2016
http://www.ncbi.nlm.nih.gov/pubmed/28461290
http://doi.org/10.1088/1752-7163/aa5cc5
http://doi.org/10.1136/thx.2010.156695
http://doi.org/10.1016/j.jaci.2007.05.043
http://www.ncbi.nlm.nih.gov/pubmed/17658592
http://doi.org/10.1111/all.12793
http://doi.org/10.3390/metabo5010003
http://doi.org/10.1111/j.1748-1716.2006.01624.x
http://doi.org/10.1183/13993003.00056-2019
http://www.ncbi.nlm.nih.gov/pubmed/31273044
http://doi.org/10.1371/journal.pone.0095668
http://www.ncbi.nlm.nih.gov/pubmed/24752575
http://doi.org/10.1016/j.chroma.2011.04.026
http://www.ncbi.nlm.nih.gov/pubmed/21546028
http://doi.org/10.1111/cea.13080
http://www.ncbi.nlm.nih.gov/pubmed/19793086
http://doi.org/10.1016/j.jaci.2017.04.047
http://doi.org/10.1111/j.2047-6310.2014.221.x
http://doi.org/10.1183/09031936.03.00017003a
http://doi.org/10.1016/j.jaci.2016.08.038
http://doi.org/10.1136/thx.2009.131391
http://doi.org/10.1007/s00508-005-0336-9
http://www.ncbi.nlm.nih.gov/pubmed/15875756
http://doi.org/10.1039/C5LC00328H
http://www.ncbi.nlm.nih.gov/pubmed/26076383
http://doi.org/10.1183/09031936.00036411


Metabolites 2021, 11, 265 15 of 15

35. Zhou, M.; Sharma, R.; Zhu, H.; Li, Z.; Li, J.; Wang, S.; Bisco, E.; Massey, J.; Pennington, A.; Sjoding, M.; et al. Rapid breath analysis
for acute respiratory distress syndrome diagnostics using a portable two-dimensional gas chromatography device. Anal. Bioanal.
Chem. 2019, 411, 6435–6447. [CrossRef]

36. Sharma, R.; Zhou, M.; Hunter, M.D.; Fan, X. Rapid in situ analysis of plant emission for disease diagnosis using a portable gas
chromatography device. J. Agric. Food Chem. 2019, 67, 7530–7537. [CrossRef] [PubMed]

http://doi.org/10.1007/s00216-019-02024-5
http://doi.org/10.1021/acs.jafc.9b02500
http://www.ncbi.nlm.nih.gov/pubmed/31184878

	Introduction 
	Results 
	Clinical Cohort 
	Biomarkers to Distinguish Asthma and Non-Asthma 
	Biomarkers to Distinguish Atopic Subjects 
	Biomarkers for Other Asthma Sub-Categories 

	Discussion 
	Materials and Methods 
	Description of the Portable GC Device 
	Exhaled Breath Collection and Analysis 
	Chromatogram Processing and Statistical Analysis 
	Identification of VOCs Using Mass Spectrometry 

	References

