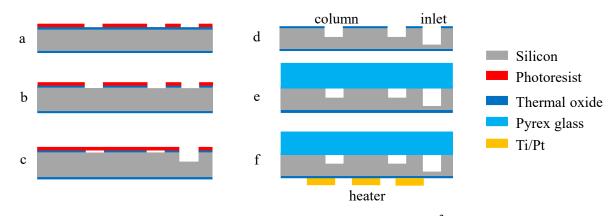
Supplementary Information to

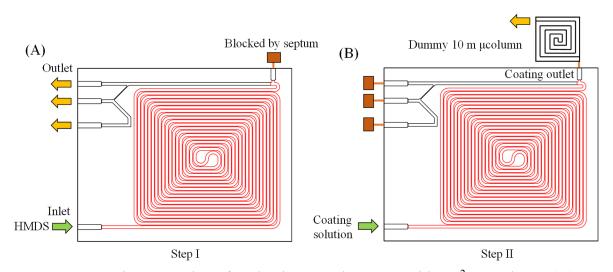
Portable Comprehensive Two Dimensional Micro-Gas Chromatography Using Integrated Flow-Restricted Pneumatic Modulator

Xiaheng Huang^{1,2,3,4}, Maxwell Wei-hao Li^{1,2,3,4}, Wenzhe Zang^{1,3}, Xiaolu Huang^{1,3,4}, Anjali Devi Sivakumar^{1,2,3,4}, Ruchi Sharma^{1,3,4}, and Xudong Fan^{1,3,4*}

> ¹Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA


²Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA

³Center for Wireless Integrated MicroSensing and Systems (WIMS²), University of Michigan, Ann Arbor, MI 48109, USA


⁴Max Harry Weil Institute for Critical Care Research and Innovation University of Michigan, Ann Arbor, MI 48109, USA

*: Corresponding author

S1. Fabrication and coating of modulators and columns

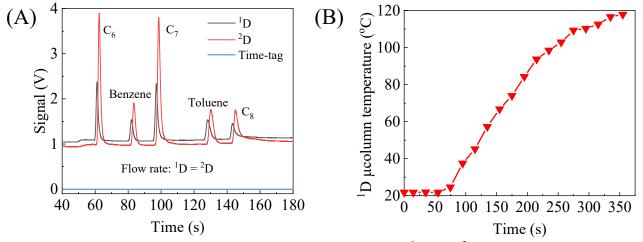

Figure S1. FRPM (including integrated version that has a ²D column) and μ column microfabrication process. (a) Soft mask of photoresist exposing both column and inlets/outlets. (b) Creation of an oxide hard mask through DRIE (deep-reactive-ion-etching). (c) Soft mask exposing only inlets/outlets for DRIE to 150 µm. (d) DRIE on the entire pattern area to etch inlets/outlets to 400 µm and column to 250 µm. (e) BHF (buffered hydrofluoric acid) strip off oxide mask and anodic bonding with Pyrex glass to seal the column. (f) Patterned metal heater (30 nm Titanium/320 nm Platinum) deposition on the backside.

Figure S2. Coating procedure for the integrated FRPM with a ²D μ column (A) Step I: Hexamethyldisilane (HMDS) deactivation of all microfluidic channels. (B) Step II: ²D μ column coating. A dummy 10 m μ column was used for coating flow control. Only channels labelled red were coated. After coating, the coating outlet was sealed by epoxy.

S2. Characterization of FRPM module

Figure S3 shows the unmodulated operation for the system depicted in Figure 3(A). The height equivalents to theoretical plates (HETPs) for the 10 m OV-1 1 D µcolumn is listed in Table S1.

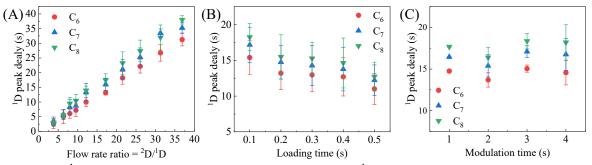
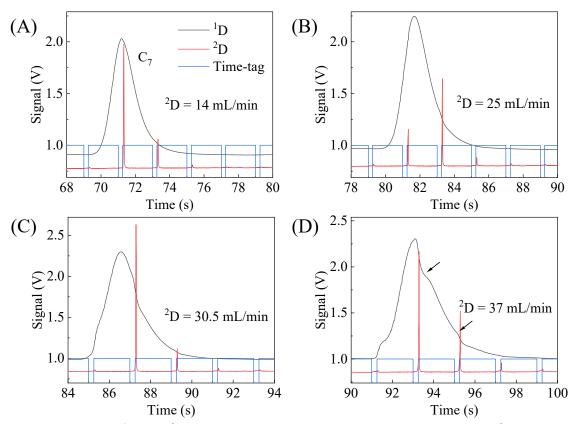


Figure S3. (A) Unmodulated operation for calibration of ¹D and ²D μ PIDs using the setup in Figure 3(A). ¹D = ²D = 1.2 mL/min. It shows that the ²D μ PID was 2.4 times more sensitive than ²D μ PID. (B) Temperature ramping profile of the ¹D 10 m OV-1 coated μ column.


Figures S4-S11 provide additional characterization of FRPM in terms of the maximally allowed $^{2}D/^{1}D$ flow ratio and peak height (and peak area) for different loading times, as well as the comparison between the modulator with and without the flow resistor.

As mentioned above, a high flow rate ratio is desired in order to generate a sharp ²D injection peak and expedite ²D separation. However, at an excessive flow rate ratio (*i.e.*, strong auxiliary flow), the ¹D flow is slowed down or even pushed backwards, causing delay in ¹D retention time measured by ¹D μ PID (see Figure S4) and jittering in ¹D chromatogram (see Figure S5). Delay in retention time prolongs the analysis time and reduces the peak capacity and jittering makes ¹D chromatogram analysis (such as peak fitting and apex identification) nearly impossible. The flow resistor (*i.e.*, the narrow channel) in the FRPM significantly mitigates the ¹D retention time delay and jittering at a high flow rate ratio.

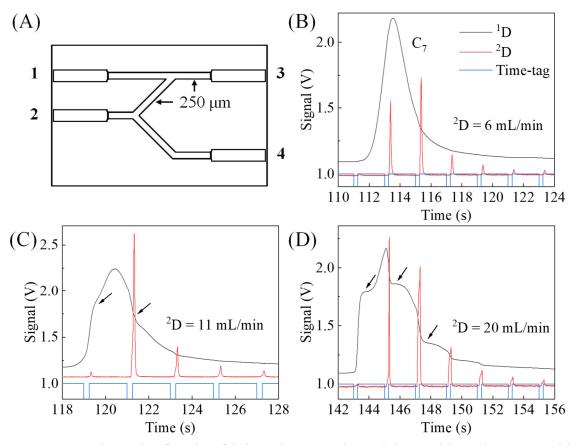

According to Figure S4, no significant delay in the ¹D eluent's retention time was observed compared to the unmodulated case. For example, ¹D retention time for C₇ was 120 s and 100 s, respectively, for modulated (at a flow rate ratio of 20) and unmodulated operation (see Figure S3(A)). Additionally, according to Figure S5, even at the flow rate ratio of 17 (²D flow = 20 mL/min), the ¹D chromatogram is still well-behaved and smooth. The jittering does not emerge until when the flow rate ratio is above 20 (²D flow rate = 25 mL/min). In contrast, when the modulator was operated without the 40 µm wide flow resistor (*i.e.*, the flow resistor's channel width became 250 µm rather than 40 µm – see Figure S6(A)), not only the ¹D retention time was significantly delayed (for example, C₇ retention time became 145 s at the same flow rate ratio of 20), but the ¹D peak was strongly perturbed (see Figure S6(C)-(D)) at a low flow rate ratio (such as 9 when ²D flow = 11 mL/min).

Figure S4. ¹D peak delays of C₆, C₇, and C₈ detected by ¹D µPID vs. flow rate ratio (A), loading time (B), and modulation time (C). Experimental conditions: (A) and (C) loading time = 0.25 s. (B) loading time = 0.1 to 0.5 s. (A) and (B) modulation time = 2 s. (C) modulation time = 1 to 4 s. (A) ²D flow rate = 4 to 40 mL/min. (B) and (C) ²D flow rate = 16 mL/min. For all experiments, ¹D flow rate = 1.2 mL/min. Error bars are obtained with 3 measurements. The results agree qualitatively with the theoretical calculations shown in Figure S7.

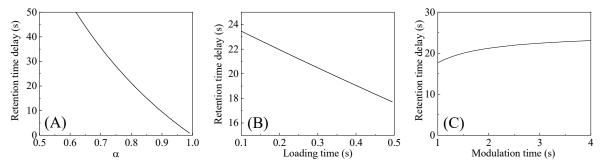
Figure S5. Zoom-in ¹D and ²D chromatograms of C₇ using the FRPM module. ²D flow rate = 14 mL/min (A), 25 mL/min (B), 30.5 mL/min (C), and 37 mL/min (D). For all experiments, ¹D flow rate = 1.2 mL/min, loading time = 0.25 s, and modulation time = 2 s. Black arrows indicate the jittering in a ¹D peak.

Figure S6. (A) Schematic of a microfabricated pneumatic modulator without the 40 μ m wide flow resistor. The flow resistor region has the same cross section of 250 μ m x 250 μ m (width x depth) as all other channels. (B)-(D) Zoom-in ¹D and ²D chromatograms of C₇. ²D flow rate = 6 mL/min (B), 11 mL/min (C), and 20 mL/min (D). For all experiments, ¹D flow rate = 1.2 mL/min, loading time = 0.25 s, and modulation time = 2 s. Black arrows indicate the jittering in a ¹D peak.

To better understand the delay in ¹D retention time, let us first assume that the analyte speed in the ¹D column during unmodulated operation (*i.e.*, both valves in Figure 1(A) are closed) is V₀, which is also the analyte speed in the ¹D column when the analyte is transferred from ¹D to ²D during the loading state under modulated operation when both valves are closed. During the ²D separation stage, a high auxiliary flow is served when both valves are open. The analyte speed in the ¹D column is reduced to αV_0 , where α ranges from 0 to 1. Let us further assume that the modulation time is t and the duty cycle (the ratio of the loading time and the modulation time) is m, then the analyte effective speed in the ¹D column becomes

$$V_{eff} = V_0 \times m + \alpha V_0 \times (1 - m)$$
(1)

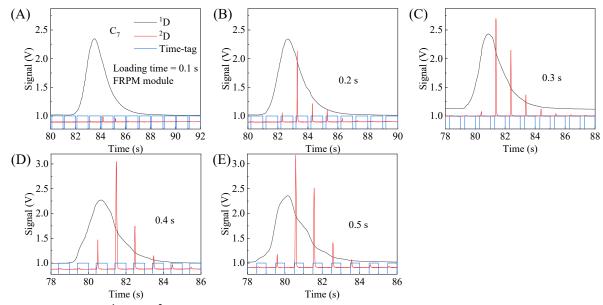
The analyte retention time is

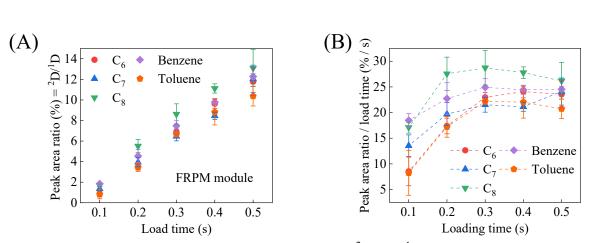

$$T = \frac{L}{V_{eff}} = \frac{L}{V_0 \times m + \alpha V_0 \times (1 - m)}$$
(2)

Now we can study a few scenarios.

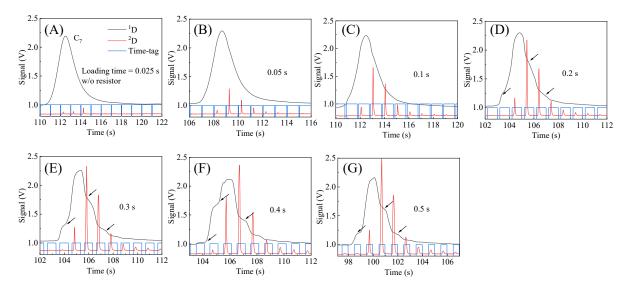
1. Unmodulated operation. In this case, m = 1, the analyte ¹D retention time is $T = L/V_0$.

2. Stop-flow operation. In this case, $\alpha = 0$, m ranges from 0-1. Consequently, the 1D retention time becomes $T = L/(mV_0)$ and is significantly delayed as compared to unmodulated operation. For example, when m = 0.25, the ¹D retention times becomes 4 times longer.


3. Modulated operation with our pneumatic modulator. In Figure S7, we plot the ¹D retention time delay with different α values (*i.e.*, different flow rate ratios), loading times, and modulation times. In all calculations below, we fix L = 10 m and V₀ = 0.1 m/s.


Figure S7. (A) Retention time delay calculated from Eq. (2) as a function of α . Note that a higher α value corresponds to a smaller flow rate ratio. Loading time = 0.25 s, modulation time = 2 s, m = 0.125. (B) Retention time delay as a function of loading time. $\alpha = 0.8$, modulation time = 2. (C) Retention time delay as a function of modulation time. $\alpha = 0.8$, loading time = 0.25 s. In all calculations, L = 10 m and V₀ = 0.1 m/s.

In Figures S8 and S9, we also examine the peak area (and height) for different loading times, as the loading time determines the amount of mass transferred from ¹D to ²D. It is shown in Figure S7 that only small peaks emerge in ²D when the loading time is 0.1 s. However, the peak height increases significantly when the loading time is above 0.2 s. Since the peak height varies depending on the time when the loading from ¹D to ²D occurs, we decide to use the entire ²D peak area corresponding to the same analyte peak in ¹D (there are multiple ²D peaks for a given ¹D peak) to estimate the total mass transfer. As expected, Figure S9(A) shows that the ²D peak area, which is normalized by the corresponding ¹D peak area, increases linearly with the loading time. In Figure S9(B), we further normalized the ²D peak area by the loading time. It is found the loading time has a threshold of ~ 0.2 s, above which the mass transfer is nearly the same regardless of the loading time. However, below 0.2 s, the mass transfer is reduced significantly. This threshold behavior may be attributed to the minimal time required to re-establish the pressure to push the ¹D eluent through the narrow channel flow resistor when the two 2-port valves are switched from open to close. Similar threshold behavior is observed with the pneumatic modulator without the 40 µm wide flow resistor, *i.e.*, the channel width is 250 μ m (see Figures S10 and S11). The threshold is reduced to approximately 0.05 s, since it is easier (and quicker) to re-establish the pressure to push the ¹D eluent through a wider (250 μ m) channel.


Note that we also microfabricated and tested pneumatic modulator chips with the flow resistor's width varying from 20 μ m to 250 μ m. The 40 μ m wide flow resistor provides the optimal performance in terms of the maximally allowed ²D/¹D flow rate ratio (without causing ¹D peak distortion and significant ¹D retention time delay) and ²D injection width.

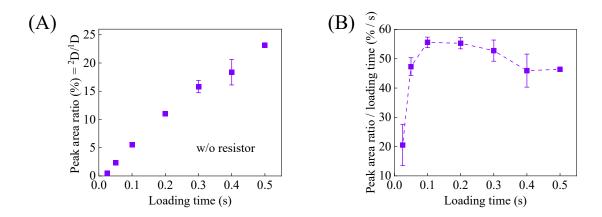

Figure S8. Zoom-in ¹D and ²D chromatograms of C₇ using the FRPM module. Loading time = 0.1 s (A), 0.2 s (B), 0.3 s (C), 0.4 s (D), and 0.5 s (E). For all experiments, modulation time = 1 s, ¹D flow rate = 1.2 mL/min, and ²D flow rate = 16 mL/min.

Figure S9. (A) Peak area ratio of between C_7 peaks in ²D and ¹D extracted from Figure S8. (B) Peak area ratio normalized by the loading time extracted from (A). Error bars are obtained with 3 measurements.

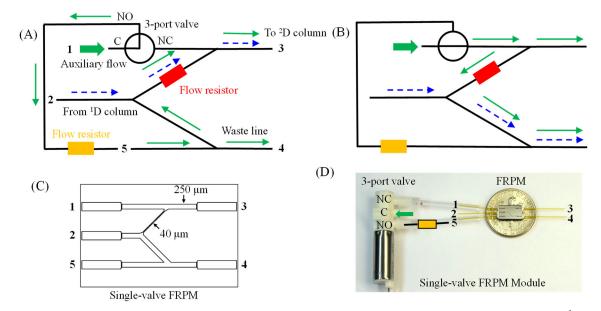


Figure S10. Zoom-in ¹D and ²D chromatograms of C₇ operated without a flow resistor (*i.e.*, the channel width is 250 μ m) with a loading time = 0.025 s (A), 0.05 s (B), 0.1 s (C), 0.2 s (D), 0.3 s (E), 0.4 s (F), and 0.5 s (G). For all experiments, modulation time = 1 s, ¹D flow rate = 1.3 mL/min, and ²D flow rate = 7.5 mL/min. Black arrows indicate the jittering features in ¹D peak.

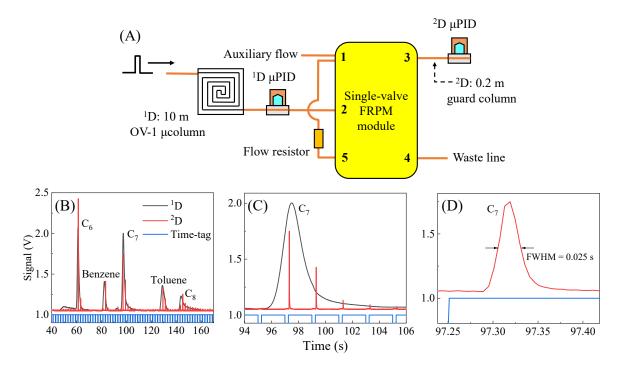
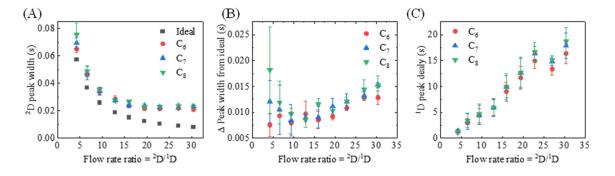
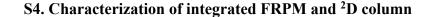


Figure S11. (A) Peak area ratio of between C_7 peaks in ²D and ¹D extracted from Figure S10. (B) Peak area ratio normalized by the loading time extracted from (A). Error bars are obtained with 3 measurements.


S3. Single-valve FRPM module


Figure S12. Single-valve based FRPM operating principle for comprehensive 2D μ GC. (A) ¹D to ²D loading configuration with the normally-open (NO) port open in the 3-port valve (typical ¹D flow rate: ~1 mL/min). C = common; NC = normally-closed. The flow resistor (labelled orange) is a 1.2 m long guard column. The blue and green arrows depict the ¹D and auxiliary flow directions, respectively. (B) ²D separation with the NC port open for a high ²D flow (typical flow rate: ~10 mL/min), enabling sharp ²D injection and rapid ²D separation. (C) Single-valve FRPM schematic. It has an additional Port 5 compared to FRPM in Figure 1. (D) Photograph of the single-valve FRPM module with a 3-port valve.

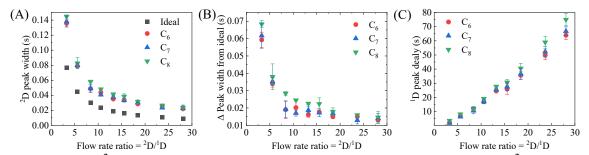


Figure S13. (A) Setup used to characterize the single-valve FRPM module (identical to the one in Figure 3(A)). (B) ¹D and ²D chromatograms of C₆, C₇, C₈, benzene, and toluene. (C) Zoom-in of C₇ in ¹D and ²D. (D) Zoom-in of C₇ in ²D. Experimental conditions: loading time = 0.25 s, modulation time = 2 s, ¹D flow rate = 1.4 mL/min, and ²D flow rate = 18.5 mL/min. The ¹D flow rate was calibrated at the end of the ¹D µPID before connecting to the single-valve FRPM module. The ²D flow rate was calibrated at the end of the ²D µPID after connecting the single-valve FRPM module and switching the 3-port valve to the normally closed port. The ¹D µcolumn underwent temperature ramping (see Figure S3(B)). The single-valve FRPM was at room temperature (~20 °C). Helium was used as both ¹D carrier gas and auxiliary flow. Note that an external flow resistor (1.2 m guard column) was used to restrict the buffer flow rate during loading but can in principle be microfabricated on the same chip for compactness.



Figure S14. (A) ²D peak widths; (B) deviations of ²D peak widths from ideal injection widths; and (C) ¹D peak delay of C₆, C₇, and C₈ vs. flow rate ratio of the single-valve FRPM module-based system. Experimental conditions: ²D flow rate = 3 to 44 mL/min, ¹D flow rate = 1.4 mL/min, loading time = 0.25 s, and modulation time = 2 s for all experiments. Error bars are obtained with 3 measurements.

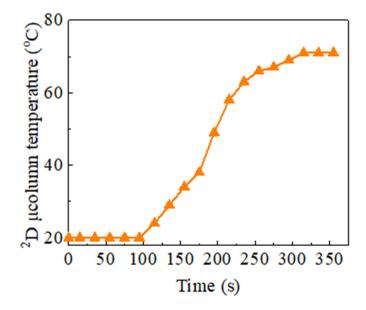


Figure S15. (A) ²D peak widths extracted from Figure 5(C). (B) Deviations of ²D peak widths from ideal ²D injection widths. (C) ¹D peak delay of C₆, C₇, and C₈ vs. flow rate ratio of the integrated FRPM module based system. Experimental conditions: ¹D flow rate = 1.1 mL/min, ²D flow rate = 3.6 to 31 mL/min, loading time = 0.25 s, and modulation time = 2 s for all experiments. Error bars are obtained with 3 measurements.

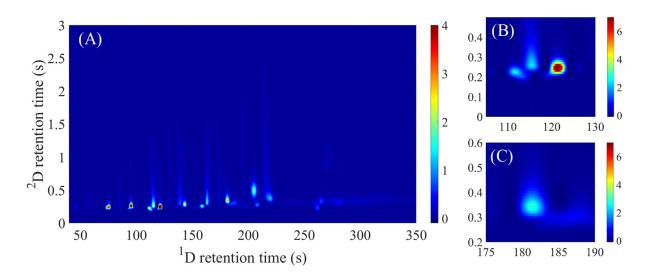
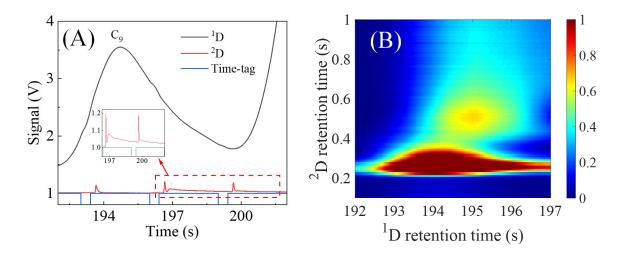


Figure S16. Zoom-in ¹D and ²D chromatograms of C₇ using the FRPM module based portable comprehensive 2D μ GC with ²D flow rate = 9 mL/min (A), 14 mL/min (B), 20 mL/min (C), and 25 mL/min (D). For all experiments ¹D flow rate = 1.1 mL/min, loading time = 0.25 s, and modulation time = 2 s. Black arrows indicate the jittering features in a ¹D peak when the ²D flow rate is above 20 mL/min.


S5. Integrated FRPM based comprehensive 2D µGC device

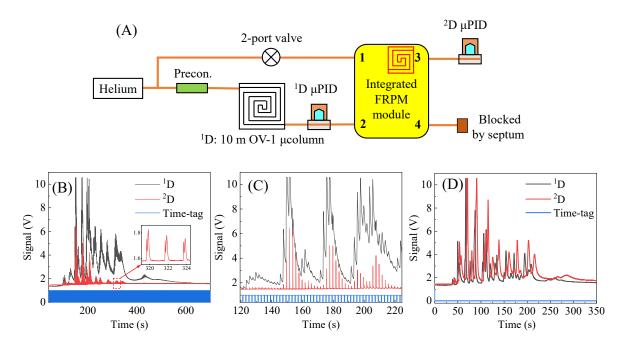

Figure S17. Temperature ramping profile of the integrated FRPM chip. The ²D column has the same temperature ramping profile.

Figure S18. (A) 2D contour plot generated using only the ²D chromatogram in Figure 7(A). (B) and (C) correspond to the zoom-in areas of Figures 7(G) and (I), respectively. Note that only 32 peaks were counted from the 2D contour plot in (A) vs. 40 peaks from the 2D contour plot in Figure 7(F).

Figure S19. (A) Zoom-in of C₉ from Figure 7(A). Inlet shows the ²D separation of 2 VOCs, implying co-elution in ¹D. (B) The corresponding 2D contour plot from Figure 7(F).

Figure S20. (A) Schematic of the FRPM based comprehensive 2D μ GC device operated in a stopflow modulation mode, in which Port 4 is permanently blocked. When the 2-port valve is closed, ¹D separation takes place and the eluents from the ¹D column are loaded to the ²D column. When the 2-port valve is open, ¹D separation is suspended and the helium source generates a high ²D flow for rapid ²D separation. (B) ¹D and ²D chromatograms of 40 VOCs generated by stop-flow modulation. Inlet shows the ²D separation of 2 VOCs. The entire separation is completed in ~600 s, much longer than 300 s reported in Figure 7(A). (C) Zoom-in portion of (B), where strong jittering in the ¹D chromatogram can be seen easily. (D) Unmodulated operation when the 2-port valve is permanently closed. Experimental conditions: ¹D flow rate = 1.2 mL/min, ²D flow rate = 11 mL/min, loading time = 0.4 s, and modulation time = 2 s. Unmodulated: ¹D flow rate = ²D flow rate = 1.2 mL/min. Both ¹D μ column and ²D integrated FRPM module underwent temperature ramping shown in Figures S3(B) and S17, respectively.

Table S1. Height equivalents to theoretical plates (HETPs) for 10 m OV-1 ${}^{1}D$ µcolumn at a flow rate of 40 cm/s. Data are calculated from the ${}^{1}D$ chromatogram in Figure S3(A).

Analyte	RT (s)	FWHM (s)	N	HETP (mm)
C ₆	61.1	1.46	9711.32	1.03
Benzene	82	1.97	9607.20	1.04
C7	97.1	1.6	20422.08	0.49
Toluene	128.2	2.9	10836.31	0.92
C ₈	143.3	2.5	18218.55	0.55

Table S2. 40 VOCs used in the comprehensive 2D μ GC system.

#	Analyte	Boiling point (°C)	Dipole moment (D)	
1	acetone	56.2	2.85	
2	2-methylfuran	64	0.72	
3	tetrahydrofuran (THF)	66	1.63	
4	trans-2-hexene-1-al	68	N.A.	
5	hexane (C ₆)	69	0	
6	ethyl acetate	77	1.78	
7	1-chlorobutane	78	1.9	
8	benzene	80.1	0	
9	cyclohexane	80.75	0	
10	isopropanol	82.5	1.66	
11	heptane (C7)	98	0	
12	2-pentanone	101	N.A.	
13	1,4-dioxane	101	0.45	
15	methylcyclohexane	101	0	
14	3-pentanone	102	N.A.	
16	toluene	110.6	0.36	
17	methyl isobutyl ketone	117	2.8	

18	pinacolyl alcohol	120.4	N.A.
19	octane (C8)	125.6	0
20	butyl acetate	126.1	1.87
21	2-hexanone	128	2.69
22	hexanal	129	N.A.
23	chlorobenzene	132	1.5
24	1-chlorohexane	135	1.94
25	ethylbenzene	136	0.58
26	1-pentanol	138	1.7
27	xylene	138.3	0
28	styrene	145	0.181
29	2-heptanone	150	2.59
30	nonane (C9)	151	0.07
31	cumene	152	0.65
32	heptanal	155	2.56
33	1-hexanol	157	1.6
34	decane (C ₁₀)	174.1	0.07
35	dipentene	176	N.A.
36	benzaldehyde	178.1	2.89
37	benzyl chloride	179	1.74
38	1,2-dichlorobenzene	180.5	2.5
39	2-nonanone	195.3	N.A.
40	undecane (C11)	196	0

N.A.: data is not available.

	Modulation mechanism: Diverting and differential	Miniaturization and integration on a chip	Analyte concentration dilution after transfer	Duty cycle and mass loss	High flow rate ratio (² D/ ¹ D) without disturbing ¹ D flow	Sharp injection and rapid separation without disturbing ¹ D flow
4- or 6- port valve based ¹⁻⁴	Can be either	No	No	Up to 100%. Mass loss varies depending on the duty cycle	Yes	Yes
Regular Deans switch ⁵	Diverting	Possible	Yes	Varies. Mass loss	No (see Note 1)	No
Stop-flow ⁶	Differential	Possible	No	Varies. No mass loss	No (see Note 2)	Yes
Agilent capillary flow technology (CFT) ⁷	Differential	No	No	No mass loss	No	No
Shimadzu Deans switch ⁸	Diverting	No	Yes	Used in heart- cutting Mass loss	Possible	Possible
FRPM (this work)	Diverting	Yes	No	10-50%. Mass loss (see Note 3)	Yes	Yes

Table S3. Comparison of different types of pneumatic modulators.

Note 1: A low ${}^{2}D/{}^{1}D$ can be used. But at a high ${}^{2}D/{}^{1}D$ flow rate ratio strong ${}^{1}D$ disturbances are observed. See our results in Figure S6.

Note 2: Switching between stop and flow causes strong ¹D flow disturbances. See our results in Figure S20.

Note 3: FRPM can also be used as a stop-flow modulator (see the results in Figure S20).

The use of flow resistors is a common practice in a pneumatic modulator. As pointed out by Seeley⁹, most of such flow resistors are implemented to achieve a desired flow balance during valve-switching for directing the auxiliary flow path for ¹D to ²D injection and ²D separation respectively. In the Shimadzu's flow modulator^{8,9}, one of the flow resistors is added between ¹D and ²D to minimize the flow disturbances in the ¹D column, which serves the same purpose as the flow resistor used in the FRPM (see the detailed comparison in Table S3).

Item	P/N	Company
Norland optical adhesive 68T	68T01	Norland
Hysol 1C Epoxy	1373425	Ellsworth Adhesive
Deactivated fused silica tubing	10010	Restek
Universal press-tight connectors	20401	Restek
21.5-gauge stainless steel tubing	8988K54	McMaster-Carr
Glass wool	20411	Sigma Aldrich
32-gauge nickel chromium wire	32BNC	Consolidated
Krypton lamp for PID	043-257	MOCON baseline
PCB board	Not applicable	M.A.K.S.
3-port valve	LFRA1220170D	Lee Company
3-port valve	LHDA1231315H	Lee Company
2-port valve	LHDB1252115H	Lee Company
Pump	T3HP-1PD-12-1SNP	Parker Hannifin
Transformer for PID excitation	CCFL FL3209	Coil Craft
DC to DC convertor	78B12	Digikey
Copper mesh	B08PT35XRD	Amazon
Power supply	1866-RPS-120S-24-	Digikey
	ND	
Tedlar bag	22952	Restek

Table S4. Accessory materials for the system assembly.

References:

- 1 Tranchida, P. Q., Purcaro, G., Dugo, P. & Mondello, L. Modulators for comprehensive two-dimensional gas chromatography. *Trends Anal. Chem.* **30**, 1437-1461 (2011).
- 2 Edwards, M., Mostafa, A. & Górecki, T. Modulation in comprehensive two-dimensional gas chromatography: 20 years of innovation. *Anal. Bioanal. Chem.* **401**, 2335-2349 (2011).
- 3 Seeley, J. V., Kramp, F. & Hicks, C. J. Comprehensive Two-Dimensional Gas Chromatography via Differential Flow Modulation. *Anal. Chem.* **72**, 4346-4352 (2000).
- 4 Wang, F. C.-Y. New valve switching modulator for comprehensive two-dimensional gas chromatography. J. Chromatogr. A **1188**, 274-280 (2008).
- 5 Seeley, J. V., Micyus, N. J., Bandurski, S. V., Seeley, S. K. & McCurry, J. D. Microfluidic Deans Switch for Comprehensive Two-Dimensional Gas Chromatography. *Anal. Chem.* **79**, 1840-1847 (2007).
- 6 Whiting, J. J. *et al.* A high-speed, high-performance, microfabricated comprehensive two-dimensional gas chromatograph. *Lab Chip* **19**, 1633-1643 (2019).
- 7 Quimby, B., McCurry, J. & Norman, W. Capillary flow technology for gas chromatography: reinvigorating a mature analytical discipline. *LCGC The Peak* **25**, 7-15 (2007).
- 8 Sciarrone, D. *et al.* Evaluation of tea tree oil quality and ascaridole: a deep study by means of chiral and multi heart-cuts multidimensional gas chromatography system coupled to mass spectrometry detection. *J. Chromatogr.*. *A* **1217**, 6422-6427 (2010).
- 9 Seeley, J. V. Recent advances in flow-controlled multidimensional gas chromatography. *J. Chromatogr. A* **1255**, 24-37 (2012).