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Abstract

IMPORTANCE Breath analysis has been explored as a noninvasive means to detect COVID-19.
However, the impact of emerging variants of SARS-CoV-2, such as Omicron, on the exhaled breath
profile and diagnostic accuracy of breath analysis is unknown.

OBJECTIVE To evaluate the diagnostic accuracies of breath analysis on detecting patients with
COVID-19 when the SARS-CoV-2 Delta and Omicron variants were most prevalent.

DESIGN, SETTING, AND PARTICIPANTS This diagnostic study included a cohort of patients who
had positive and negative test results for COVID-19 using reverse transcriptase polymerase chain
reaction between April 2021 and May 2022, which covers the period when the Delta variant was
overtaken by Omicron as the major variant. Patients were enrolled through intensive care units and
the emergency department at the University of Michigan Health System. Patient breath was
analyzed with portable gas chromatography.

MAIN OUTCOMES AND MEASURES Different sets of VOC biomarkers were identified that
distinguished between COVID-19 (SARS-CoV-2 Delta and Omicron variants) and non–COVID-
19 illness.

RESULTS Overall, 205 breath samples from 167 adult patients were analyzed. A total of 77 patients
(mean [SD] age, 58.5 [16.1] years; 41 [53.2%] male patients; 13 [16.9%] Black and 59 [76.6%] White
patients) had COVID-19, and 91 patients (mean [SD] age, 54.3 [17.1] years; 43 [47.3%] male patients; 11
[12.1%] Black and 76 [83.5%] White patients) had non–COVID-19 illness. Several patients were
analyzed over multiple days. Among 94 positive samples, 41 samples were from patients in 2021
infected with the Delta or other variants, and 53 samples were from patients in 2022 infected with
the Omicron variant, based on the State of Michigan and US Centers for Disease Control and
Prevention surveillance data. Four VOC biomarkers were found to distinguish between COVID-19
(Delta and other 2021 variants) and non–COVID-19 illness with an accuracy of 94.7%. However,
accuracy dropped substantially to 82.1% when these biomarkers were applied to the Omicron
variant. Four new VOC biomarkers were found to distinguish the Omicron variant and non–COVID-19
illness (accuracy, 90.9%). Breath analysis distinguished Omicron from the earlier variants with an
accuracy of 91.5% and COVID-19 (all SARS-CoV-2 variants) vs non–COVID-19 illness with 90.2%
accuracy.

CONCLUSIONS AND RELEVANCE The findings of this diagnostic study suggest that breath analysis
has promise for COVID-19 detection. However, similar to rapid antigen testing, the emergence of new
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Abstract (continued)

variants poses diagnostic challenges. The results of this study warrant additional evaluation on how
to overcome these challenges to use breath analysis to improve the diagnosis and care of patients.

JAMA Network Open. 2023;6(2):e230982. doi:10.1001/jamanetworkopen.2023.0982

Introduction

The COVID-19 pandemic continues to present diagnostic challenges due to emerging variants of
SARS-CoV-2. The 2 major platforms for COVID-19 diagnosis are reverse transcriptase–polymerase
chain reaction (RT-PCR) and rapid antigen testing (RAT). While RT-PCR is the criterion standard, RAT
was developed to address the need for faster turnaround and scaling of testing to the public for both
asymptomatic and symptomatic individuals. However, the transition of the pandemic from the
SARS-CoV-2 Delta variant to the Omicron variant has reduced the accuracy of RATs, thus presenting
substantial challenges in their ability to maintain accuracy, which is critical to decision-making.1-4

Since the pandemic’s beginning, alternative methods of detecting COVID-19 have been
explored, including gas chromatography–ion mobility spectrometry (GC-IMS), Fourier-transform
infrared spectroscopy, GC–mass spectrometry (GC-MS), and others.5-20 The basis for these
approaches is that breath contains hundreds of volatile organic compounds (VOCs), many of which
are produced in response to inflammation and infection.19,21-36 Several technologies have been
demonstrated to have accuracies comparable with RT-PCR testing and RATs, and 1 has recently been
approved for use under the US Food and Drug Administration’s Emergency Use
Authorization.10,17,18,37

However, nearly all results reported in these studies5-20 were prior to 2022, ie, when the
dominant SARS-CoV-2 strain was the Delta variant. Only one recent study found differences in breath
profiles between the Delta and Omicron waves.38 In this study, we report the use of portable GC
developed as a point-of-care diagnostic modality for COVID-19 and its performance during the Delta
surge and its transition to Omicron, including future challenges in using breath analysis in the current
pandemic and future respiratory illness epidemics.

Methods

Clinical Study Protocol and Participants
This project was developed under the National Institutes of Health’s Screening for COVID-19 by
Electronic-Nose Technology program in response to the public health emergency issued by the
Department of Health and Human Services for COVID-19 as part of the Rapid Acceleration of
Diagnostics–Radical initiative.39 The study was approved by the University of Michigan’s Institutional
Review Board. Recruited patients included both those who received mechanical ventilation and
those who could breathe spontaneously. Informed written consent was obtained from patients or
their legally authorized representative. The study followed the Standards for Reporting Diagnostic
Accuracy (STARD) reporting guideline.

Patients were enrolled between April 26, 2021, and May 31, 2022, via intensive care units and
the emergency department at the University of Michigan Health System. Convenience sampling was
used to enroll patients undergoing RT-PCR testing who were symptomatic for COVID-19 or were
required to undergo RT-PCR COVID-19 screening for infection control purposes. Samples for RT-PCR
tests were collected using nasopharyngeal swabbing for the patients who could breathe
spontaneously and using either nasopharyngeal swabbing or tracheal aspirate for those who were
receiving mechanical ventilation. The hospital uses several RT-PCR platforms, including Molecular
Simplexa (DiaSorin), ID NOW (Abbott), Alinity (Abbott), and FilmArray Respiratory Panel 2.1 (Biofire),
to detect SARS-CoV-2. No attempt was made to control for which RT-PCR test was used.
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Participant race and ethnicity are reported as a requirement of the National Institute of Health
Rapid Acceleration of Diagnostics–Radical initiative. It was determined from the patient’s registration
data located in the health system’s electronic medical record.

Breath Collection and Analysis
Breath collection and analysis was conducted within 18 hours of the corresponding RT-PCR test. For
patients receiving mechanical ventilation, 1 to 2 L of breath was collected into a 5-L Tedlar bag
through a T-connector attached to the ventilator’s expiratory port (eFigure 1A in Supplement 1).
Patients breathing spontaneously were asked to orally exhale 1 to 2 L of breath into a 5-L Tedlar bag
via a mouthpiece and a medical-grade HEPA filter (eFigure 1B in Supplement 1). Breath analysis took
place in the patient’s room immediately after collection. The Tedlar bag was connected to the GC
device (eFigure 1C in Supplement 1). Approximately 350 mL of breath was pulled from the bag into
the GC, which was controlled remotely via a laptop. Details are described in eAppendix 1 in
Supplement 1. On completion of breath analysis, consumables (T-connector, bag, mouthpiece, and
HEPA filter) were disposed of. All other parts were disinfected using Oxy-bleach wipes.

Statistical Analysis
The data analysis pipeline was developed in house and was implemented using Matlab version
R2021a (MathWorks). Approximately 90 peaks were detected in each breath chromatogram.
Collectively, there were a total of 131 different peaks in the 205 chromatograms. Each peak
represents 1 VOC or 1 set of co-eluted VOCs. Linear discriminant analysis (LDA) and principal
component analysis (PCA), which have been tested and validated in our earlier breath analysis
studies on other diseases,21-23,40 were used for data set dimensionality reduction, biomarker
selection, and statistical analyses. Details of the biomarker discovery algorithm were previously
reported.21 The primary analytic outcome was binary. In the Results section, we report 4 scenarios:
(1) COVID-19 (2021), which refers to patients recruited before December 14, 2021, and were assumed
to be infected by Delta or earlier variants,41,42 vs non–COVID-19 illness, which refers to patients
recruited throughout the study; (2) COVID-19 (2022), which refers to patients recruited from January
11, 2022, to the end of the study (May 31, 2022) and were therefore assumed to be infected by the
Omicron variant based on the sharp transition from Delta to Omicron, as determined by surveillance
testing by the state of Michigan (eFigure 4C in Supplement 1) as well as the Centers for Disease
Control and Prevention (CDC)41-43 vs non–COVID-19 illness; (3) COVID-19 (2021) vs COVID-19 (2022);
and (4) COVID-19 (2021 and 2022) vs non–COVID-19 illness, as well as the corresponding specificity,
sensitivity, positive predictive value (PPV), negative predictive value (NPV), and accuracy (defined as
the [true positive + true negative] / total number of samples). A gap of nearly 1 month between our
last recruitment in December 2021 and the first recruitment in January 2022 worked as a buffer zone
in the separation of the Delta and Omicron variants. At this time, the State of Michigan reported that
Omicron was responsible for nearly 100% of COVID-19 infections (eFigure 4C in Supplement 1).

A subset of collected breath samples were analyzed simultaneously by our portable GC and an
Agilent MS (eFigure 3A in Supplement 1). Details appear in eAppendix 2 in Supplement 1.

Results

The demographic details and the total number of participants enrolled in this study are summarized
in Figure 1 and Table 1. Overall, a total of 77 patients with COVID-19 (mean [SD] age, 58.5 [16.1] years;
41 [53.2%] male patients; 13 [16.9%] Black and 59 [76.6%] White patients) and 91 patients with
non–COVID-19 illness (mean [SD] age, 54.3 [17.1] years; 43 [47.3%] male patients; 11 [12.1%] Black and
76 [83.5%] White patients) were recruited to obtain a total of 205 breath samples. eFigure 4C in
Supplement 1 shows the transition from the Delta to Omicron variants in Michigan41 between late
December 2021 and early January 2022.
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Distinguishing Between COVID-19 (2021) and Non–COVID-19 Illness
Figure 2A shows a representative breath chromatogram from a patient with COVID-19 collected in
July 2021 and a patient with non–COVID-19 illness. For VOC biomarker discovery, 48 of 152 breath
chromatograms were treated as the training set, among which 24 chromatograms were from 24
patients with COVID-19 and 24 chromatograms were from 24 patients with non–COVID-19 illness.
The remaining 104 chromatograms (17 from patients with COVID-19 and 87 from patients with
non–COVID-19 illness) were used as the testing set.

Four VOCs (peak identification No. 17, 49, 91, and 94) were identified (Figure 2 and Table 2) to
distinguish between COVID-19 (2021) and non–COVID-19 illness. A sensitivity of 92.7%, a specificity
of 95.5%, a PPV of 88.4%, an NPV of 97.2%, and an accuracy of 94.7% were achieved (Table 3).
eFigure 5 in Supplement 1 shows the corresponding PCA plot. In eFigure 5, there were 12 breath
samples from 4 patients who had previously tested positive for COVID-19 according to the RT-PCR
tests during their stay in the hospital but tested negative when the breath samples were collected
and analyzed.

Distinguishing COVID-19 (2022) and Non–COVID-19 Illness
Using the 4 previously identified VOC biomarkers (ie, peak identification No. 17, 49, 91, and 94),
breath analyses among patients with COVID-19 (2022) resulted in a substantially lower sensitivity
(60.4%) and accuracy (82.1%) but without a change in specificity (95.4%) given that there was no
change in the non–COVID-19 illness cases in the testing set given in Table 3. The corresponding PCA

Figure 1. Demographic Information of Study Participants

30

25

20

15

10

5

0

Br
ea

th
 sa

m
pl

es
, N

o.

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

Monthly distribution of patients with COVID-19 and patients with non–COVID-19 recruited during the studyA

25

20

15

10

5

0

Pa
rt

ic
ip

an
ts

, N
o.

11-20 31-4021-30 41-50 51-60 71-8061-70 81-90 91-100

Age distribution of patients with COVID-19 and patients with non–COVID-19B

50

40

30

20

10

0

Pa
rt

ic
ip

an
ts

, N
o.

Male Female

Sex distribution patients with COVID-19
and patients with non–COVID-19

C

2021 2022

Age distribution, y

COVID-19

Non–COVID-19

Bar graphs show the distribution of different categories of patients recruited during the study. More information can be found in Table 1 and eFigures 3A and B in Supplement 1.
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plot is provided in eFigure 7 in Supplement 1. This finding suggested a different pathologic response
of humans to the Omicron variant vs Delta and earlier variants in 2021. Therefore, a new VOC
biomarker search was undertaken in the same manner as for COVID-19 (2021).

For the new VOC biomarker search, 50 of 164 breath chromatograms were treated as the
training set, among which 25 chromatograms were from 25 patients with COVID-19 and 25
chromatograms were from 25 patients with non–COVID-19 illness. The remaining 114 chromatograms
(28 from patients with COVID-19 and 86 from patients with non–COVID-19 illness) were used as the
testing set. A new set of biomarkers (peak identification No. 17, 67, 87, and 97) were identified
(Table 2 and eFigure 8 in Supplement 1) to distinguish between COVID-19 (2022) and non–COVID-19
illness. A sensitivity of 88.7%, a specificity of 91.7%, a PPV of 83.9%, an NPV of 94.4%, and an
accuracy of 90.9% were achieved (Table 3). eFigure 9 in Supplement 1 shows the corresponding
PCA plot.

Distinguishing COVID-19 (2021) and COVID-19 (2022)
Since the pathology and human response are different between Delta (and earlier variants) and
Omicron, we hypothesized that it could be possible to distinguish them using breath analysis. In an
additional biomarker search, we used 48 of 94 breath chromatograms as the training set, among
which 24 were from 24 patients with COVID-19 (2021) and 24 were from 24 patients with COVID-19
(2022). The remaining 46 chromatograms (17 from patients with COVID-19 [2021] and 29 from
patients with COVID-19 [2022]) were used for testing.

A new set of VOC biomarkers (peak identification No. 27, 67, 69, 87, and 94) were identified
(Table 2 and eFigure 8 in Supplement 1) to distinguish between presumed Omicron and all previous
variants. A sensitivity of 92.7%, a specificity of 90.6%, a PPV of 88.4%, an NPV of 94.1%, and an
accuracy of 91.5% were achieved (Table 3). eFigure 10 in Supplement 1 shows the corresponding
PCA plot.

Distinguishing COVID-19 (2021 and 2022) and Non–COVID-19 Illness
An additional question and concern are whether breath analysis can distinguish between patients
with COVID-19 and patients with non–COVID-19 illness, regardless of variants. A set of VOC
biomarkers that are suitable for all variants (ie, the variants occurring between April 2021 and May
2022, including Delta and Omicron BA.1/BA.2) would be useful for rapid diagnostics without
considering the variant. Toward this end, we conducted another biomarker search by using 96 of 205

Table 1. Patients and Breath Samples Used in the Study

Category

COVID-19

Non–COVID-19 illness2021a 2022b Overall

Patients, total No. /asymptomatic No.c 24/2 53/8 77/10 91/NA

Breath samples,
total No. /asymptomatic No.

41/3 53/8 94/11 111/NA

Age, mean (SD), y NA NA 58.5 (16.1) 54.3 (17.1)

Sex, No. (%)

Female 11 (45.8) 25 (47.2) 36 (46.8) 48 (52.7)

Male 13 (54.2) 28 (52.8) 41 (53.2) 43 (47.3)

Abbreviation: NA, not applicable.
a The patients in 2021 were recruited between April 26 and December 14, 2021.
b The patients in 2022 were recruited between January 11 and May 31, 2022.
c The total number of patients in this study is 167. One patient in 2021 originally tested positive for COVID-19 and was later

recovered (ie, COVID-19 negative). Therefore, this patient is counted in both COVID-19 and non–COVID-19 illness
categories. Overall, 26 patients (11 with COVID-19 and 15 with non–COVID-19 illness) recruited in 2021 were collected and
analyzed over multiple days (>24-hour interval) during their stay in the hospital for longitudinal monitoring. Per our
institutional review board, we were allowed to collect breath samples up to 10 days from the consent date. Therefore,
the number of breath samples is larger than the number of patients in 2021.
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breath chromatograms as the training set, among which 48 were from 48 patients with COVID-19 (24
from 2021 and 24 from 2022) and 48 were from 48 patients with non–COVID-19 illness. The
remaining 109 chromatograms (46 from patients with COVID-19 and 63 from patients with
non–COVID-19 illness) were used as the testing set, including those collected in May of 2022.

A new set of VOC biomarkers (peak identification No. 12, 67, 84, and 105) were identified
(Table 2 and eFigure 8 in Supplement 1) to distinguish between all variants of COVID-19 occurring
between April 2021 and May 2022 and non–COVID-19 illness. A sensitivity of 89.4%, a specificity of
91.0%, a PPV of 89.4%, an NPV of 91.0%, and an accuracy of 90.2% were achieved (Table 3).
eFigure 11 in Supplement 1 shows the corresponding PCA plot.

Figure 2. Representative Breath Chromatograms From a Patient With COVID-19 in July 2021 and a Patient
with Non–COVID-19 Illness
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Discussion

In this study, we demonstrated the ability of a portable GC technology to detect exhaled breath VOC
signatures at point of care that were capable of diagnosing COVID-19 with accuracies equivalent to
or better than previously reported breath analysis results involving patients in 2020 and 2021 (ie,
Delta or earlier variants).8-10,12-15,17,18,37 More importantly, we also highlighted the challenge that
emerging variants pose to such technologies. On November 30, 2021, Omicron variant B.1.1.529 was
determined to be a variant of concern by the United States and since has (with additional
subvariants) become the dominant COVID-19 strain in the country. During our study, we noted a
significant decrease in sensitivity (from 88.2% to 60.4%) beginning in mid-January 2022. It was
during this time that the Omicron variant became the dominant strain. While Michigan Medicine does
not do subtyping of the COVID-19 virus, we relied on surveillance and subtyping information
provided by Michigan’s Department of Health (eFigure 4C in Supplement 1) and the CDC.41,42 Our
finding that Omicron seemed to have a different host response than Delta and earlier variants was
corroborated by a recent breath analysis study that used a substantially different method.38

Since the VOCs detected are likely reflective of inflammation, it is not surprising that changes
were noted given that the Delta variant was associated with more severe inflammation.44-46 As
SARS-CoV-2 has mutated over time, these mutations have affected viral characteristics, such as
transmissibility and symptom severity. Unlike RT-PCR, which relies on conserved RNA, these
mutations have significantly impacted the performance of RATs and other molecular tests.47 Other
confounding variables that are difficult to account for that could affect breath VOC signatures related
to inflammation include changes in the basic biology of SARS-CoV-2, rates of vaccination and
boosters, patients’ reinfections, and the advent of outpatient treatments such as paxlovid.

As indicated in the results, a new VOC biomarker search was performed once we noted the drop
in performance and the national and regional reporting of the rapid emergence of the Omicron
variant, which significantly improved the accuracy of breath analysis. These VOC combinations
appear to be able to distinguish patterns different from those observed during the Delta variant peak.
When the entire pattern library and models were combined, the overall performance on all
participants attained accuracies that could potentially make breath analysis a viable and rapid testing
alternative. This becomes of importance during the transition of one variant to another to ensure
that declines in diagnostic accuracies are short lived, as variants can emerge at different rates. To
implement such a strategy, great vigilance will be needed, as will careful monitoring and

Table 2. Volatile Organic Compound Biomarkers Used in the Study

Peak ID Compound name Biomarker seta

12 Methylcyclopentane COVID-19 (all variants) vs non–COVID-19 illness

17 Benzene COVID-19 (2021) vs non–COVID-19 illness; COVID-19 (2022)
vs non–COVID-19 illness

27 Unidentified COVID-19 (2021) vs COVID-19 (2022)

49 Octane COVID-19 (2021) vs non–COVID-19 illness

67 2,2,4-Trimethylheptane COVID-19 (all variants) vs non–COVID-19 illness; COVID-19
(2022) vs non–COVID-19 illness; COVID-19 (2021) vs
COVID-19 (2022)

69 2,2-Dimethyloctane COVID-19 (2021) vs COVID-19 (2022)

84 Decene and Dimethyloctadiene
(different isomers)

COVID-19 (all variants) vs non–COVID-19 illness

87 Decane COVID-19 (2022) vs non–COVID-19 illness; COVID-19 (2021)
vs COVID-19 (2022)

91 Trimethyloctane (different isomers) COVID-19 (2021) vs non–COVID-19 illness

94 Methyldecane (different isomers) COVID-19 (2021) vs non–COVID-19 illness; COVID-19 (2021)
vs COVID-19 (2022)

97 Undecane COVID-19 (2022) vs non–COVID-19 illness

105 Dimethyldecane and Tetramethyloctane
(different isomers)

COVID-19 (all variants) vs non–COVID-19 illness

Abbreviation: ID, identification.
a COVID-19 (2021) refers to the patients with COVID-19

who were recruited prior to December 14, 2021, and
were therefore assumed to be infected by SARS-
CoV-2 Delta or earlier variants. COVID-19 (2022)
refers to the patients with COVID-19 who were
recruited from January 11 to May 31, 2022, and were
therefore assumed to be infected by the SARS-
CoV-2 Omicron variant. Non–COVID-19 illness refers
to patients with no COVID-19 who were recruited
throughout the study (ie, from April 26, 2021, to May
31, 2022). All recovered patients are also included in
the non–COVID-19 illness category.
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Table 3. Statistics Summarya

Group Positive, No. Negative, No. Total, No. Specificity, % Sensitivity, % PPV, % NPV, %
Total
accuracy, %

COVID-19 (2021) vs Non–COVID-19 illness

Training

COVID-19 (2021) 23 1 24

95.8 95.8 95.8 95.8 95.8Non–COVID-19 illness 1 23 24

Total 24 24 48

Testing

COVID-19 (2021) 15 2 17

95.4 88.2 78.9 97.6 94.2Non–COVID-19 illness 4 83 87

Total 19 85 104

Training and testing

COVID-19 (2021) 38 3 41

95.5 92.7 88.4 97.2 94.7Non–COVID-19 illness 5 106 111

Total 43 109 152

COVID-19 (2022) vs Non–COVID-19 illness

Training

COVID-19 (2022) 23 2 25

96.0 92.0 95.8 92.3 94.0Non–COVID-19 illness 1 24 25

Total 24 26 50

Testing

COVID-19 (2022) 24 4 28

90.7 85.7 75.0 95.1 89.5Non–COVID-19 illness 8 78 86

Total 32 82 114

Training and testing

COVID-19 (2022) 47 6 53

91.9 88.7 83.9 94.4 90.9Non–COVID-19 illness 9 102 111

Total 56 108 164

COVID-19 (2021) vs COVID-19 (2022)

Training

COVID-19 (2021) 22 2 24

91.7 91.7 91.7 91.7 91.7COVID-19 (2022) 2 22 24

Total 24 24 48

Testing

COVID-19 (2021) 16 1 17

89.7 94.1 84.2 96.3 91.3COVID-19 (2022) 3 26 29

Total 19 27 46

Training and testing

COVID-19 (2021) 38 3 41

90.6 92.7 88.4 94.1 91.5COVID-19 (2022) 5 48 53

Total 43 51 94

COVID-19 (2021 and 2022) vs Non–COVID-19 illness

Training

COVID-19 (2021 and 2022) 43 5 48

93.8 89.6 93.5 90.0 91.7Non–COVID-19 illness 3 45 48

Total 46 50 96

Testing

COVID-19 (2021 and 2022) 41 5 46

88.9 89.1 85.4 91.8 89.0Non–COVID-19 illness 7 56 63

Total 48 61 108

Training and testing

COVID-19 (2021 and 2022) 84 10 94

91.0 89.4 89.4 91.0 90.2Non–COVID-19 illness 10 101 111

Total 94 111 205
a Corresponding 4-fold cross-validation can be found in the eTable in Supplement 1.
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communication with health authorities and their subtyping efforts to allow for new VOC signature
identification that can then be incorporated into accurate diagnosis regardless of the variant.

While we used RT-PCR as a criterion standard, there continues to be debate regarding its
accuracy and concerns over false negatives, which have been reported to be between 1% and
30%.1,48-50 False negatives can occur for many reasons, ranging from testing that occurs too early or
late, poor sample collection, changes in viral shedding, and others. As such, our performance could
potentially be better or, with further study, could be used as a confirmatory strategy or as possible
adjunct to study and determine the risk of transmissibility or the development of complications
linked to inflammation severity. Indeed, we observed 6 participants who tested both positive and
negative with RT-PCR within several hours of each other due to duplicative testing orders being
placed. These individuals were removed from our analysis.

As demonstrated in our previous longitudinal studies of acute respiratory distress syndrome
(ARDS),22,23 we were able to note the evolution of severe COVID-19 and its trajectory during the
period of the Delta variant. In the current study, we were able to monitor some patients with
COVID-19 recruited in 2021 for as many as 10 days. eAppendix 3 in Supplement 1 provides
information on 5 patients to highlight the potential of breath analysis in monitoring the trajectories
of patients with COVID-19 (some who recovered as well as those who deteriorated) and predicting
their clinical outcomes. As such, a potential advantage of breath analysis could be for trajectory
monitoring of patients with severe disease resulting in respiratory failure and requiring mechanical
ventilation.

During our study, we were also able to capture a subset of patient with asymptomatic COVID-19
and patients with non–COVID-19 illness who were found to be infected by other viruses, such as
rhinovirus, human metapneumo virus, human coronavirus OC43 (HCoV-OC43), and enterovirus. The
results for those patients are discussed in eAppendix 4 in Supplement 1. The presence of these
viruses did not appear to substantially confound the results of GC testing, but further studies
are needed.

Limitations
There are several limitations and challenges to our study and the use of GC as a diagnostic modality
in the setting of COVID-19 and other future viral pandemics. We did not perform COVID-19 subtyping
but instead relied on our state’s and the CDC’s reports of the incidence of emerging variants.41,42

Currently, we are examining our data collected before the Omicron BA.4 and BA.5 variant. We expect
to experience decreased accuracy, which may require a new search for diagnostic breath VOC
signatures. This, along with issues such as false positives, detection time vs specificity, and personal
variations in VOC profiles, represent the major challenges for breath analysis technologies. Additional
work is required to identify a universal signature that is perhaps more conserved and less prone to
change. Similar to RATs, there will need to be an agreed-upon regulatory approach as to how to track
and report the performance of breath diagnostics as variants emerge.

We also do not clearly understand the etiology of the VOCs produced during COVID-19 infection
but assume, based on their identification, that they are related to inflammation that may be
occurring in both the upper and lower respiratory tract.22,23,31,51 The fact that we were able to
diagnose COVID-19 in both symptomatic and asymptomatic participants is encouraging. More
studies on these particular VOCs, including their origins, may assist in the development of a better
understanding of the disease as well as the potential to develop new diagnostics.

Additionally, this was a single-center study using a relatively small patient sample. Larger patient
data sets at multiple and diverse clinical locations with details regarding symptom severity,
medication use, acute and chronic medical conditions, and other factors will be needed to
understand their potential to affect VOC profiles. We also used a limited data science approach to
identifying diagnostic VOC patterns. Additional machine learning tools and feature selection
techniques such as random forest, neural networks, least absolute shrinkage and selection operator,
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and minimum redundancy maximum relevance may result in more accurate and stable selection of
VOCs and better diagnostic performance.

Conclusions

The findings of this diagnostic study suggest that breath analysis using point-of-care GC may be a
promising modality for detecting COVID-19 and similar diseases that result in VOC production.
However, similar to other diagnostic modalities, such as RAT, challenges are posed by the dynamic
emergence of viral variants. The results of this study warrant additional investment and evaluation of
how to overcome these challenges and to use breath analysis to improve the diagnosis and care of
patients.
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