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Abstract: Retention time drift caused by fluctuations in physical factors such as temperature ramping
rate and carrier gas flow rate is ubiquitous in chromatographic measurements. Proper peak matching
and identification across different chromatograms is critical prior to any subsequent analysis but is
challenging without using mass spectrometry. The purpose of this work was to describe and validate
a peak matching and identification method called retention time trajectory (RTT) matching that can
be used in targeted analyses free of mass spectrometry. This method uses chromatographic retention
times as the only input and identifies peaks associated with any subset of a predefined set of target
compounds. An RTT is a two-dimensional (2D) curve formed uniquely by the retention times of
the chromatographic peaks. The RTTs obtained from the chromatogram of a sample under test and
those pre-installed in a library are matched and statistically compared. The best matched pair implies
identification. Unlike most existing peak-alignment methods, no mathematical warping or transfor-
mation is involved. Based on the experimentally characterized RTT, an RTT hybridization method
was also developed to rapidly generate more RTTs and expand the library without performing actual
time-consuming chromatographic measurements, which enables successful peak matching even for
chromatograms with severe retention time drifts. Additionally, 3.15 × 105 tests using experimentally
obtained gas chromatograms and 2 × 1012 tests using two publicly available fruit metabolomics
datasets validated the proposed method, demonstrating real-time peak/interferent identification.

Keywords: gas chromatogram; liquid chromatography; retention time; retention time drift; peak
identification

1. Introduction

Gas chromatography (GC)-based volatile organic compound (VOC) analysis can be
classified into untargeted analysis and targeted analysis. The former involves evaluation
of chemical substances in an unknown sample, whereas the latter aims only at a prede-
termined list of interesting compounds or a subset of those, with all other VOCs treated
as interferents. Due to the complexity of sample composition and the lack of pre-existing
knowledge, accurate identification in untargeted analysis requires confirmation or cross-
validation by at least two parameters, such as chromatographic retention time (RT) and
mass spectrometry (MS) fragmentation profile. In contrast, in targeted analysis, oftentimes
only the retention time is used for compound identification in order to avoid using bulky
and expensive mass spectrometry. Therefore, targeted analysis has broad applications
in on-site real-time measurements, such as environmental protection [1–3], workplace
environment monitoring [4–8], industries (e.g., petroleum [9–11] and food [12,13]), and
metabolomics [14–16].
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For targeted analysis, the retention time of each peak in the GC chromatogram is
compared with the pre-installed values of all compounds of interest in a library. In any
given sample, a positive alarm is reported when the retention time of a peak matches a
corresponding time in the library; the lack of any match instead means that a peak would
be ignored or reported as an interferent. However, variations in physical factors such as
ambient temperature, column temperature ramping profile, and carrier gas flow rate can
affect the retention time of each peak from run to run, which hinders identification or
triggers false alarms. The inability to correctly identify peaks with only retention times is
exacerbated when a sample contains a large number of compounds or when some of the
targeted peaks are closely eluted out in a chromatogram. Consequently, proper matching
or alignment of chromatographic peaks across different samples is a crucial preprocessing
step that must be performed prior to any subsequent analysis.

A simple and popular solution is data binning, which divides the signals into bins
(e.g., histograms) and incorporates all data into a recognition profile for each measure-
ment [17,18]. The binning method is easy to use and shows acceptable performance in
processing both chromatograms and spectra when the peak drift from sample to sample
is much smaller than the distance between two adjacent peaks. However, in the presence
of large peak drifts, this approach suffers from reduced resolution and information loss
(see illustrations in Figure S1). The time warping technique, such as segment-wise cor-
relation optimized warping (COW) [19], point-wise dynamic time warping (DTW) [20],
global polynomial model-based parametric time warping (PTW) [21,22], multiscale peak
alignment (MSPA) [23], and other variants [24–27], is one of most commonly adopted
methods to correct retention time drifts across chromatograms. It aligns a whole measured
chromatogram profile against a reference chromatogram using pattern recognition routines
in order to achieve peak identification. While time warping is powerful and works well
with samples of various complexities, an accurate warping-based aligning demands the
fine tuning of alignment parameters, which can often involve human intervention, thus
making automated peak identification less reliable. Moreover, all warping-based methods
can suffer, to different degrees, from misalignments and are concentration-sensitive, even
with samples of the same compositions. In some cases, warping-based aligning approaches
may not be able to yield exactly the same retention time value for the same analyte from
different measurements. Consequently, subsequent retention-time-based peak identifi-
cation or statistical analysis often requires further value correction via data binning or
clustering. Machine learning-based aligning approaches, which utilize artificial intelligence
systems to acquire knowledge by extracting patterns from data, are also able to achieve
positive alignment with decent accuracy [28–32], and they are amenable to automation
without relying on human intervention. However, these approaches often employ the mass
spectra of the peaks as one the of key subnetworks among the overall network architec-
ture, making it more suitable for bulky mass-spectrometry-based analysis rather than for
onsite monitoring where mass spectrometry is not used. Moreover, similar to most other
machine learning-based approaches, machine learning-based aligning suffers from high
computational cost during parameter training and feature extraction.

While the aforementioned methods can mitigate the peak drift issue across chro-
matograms, they all suffer from a number of drawbacks that make them unsuitable for
compound identification in targeted analysis. First and foremost, the total number of peaks
in the chromatogram obtained from the sample under test needs to be exactly the same as
in the reference chromatogram. If only a subset or, in an extreme case, a single species of
the compounds of interest (target compounds) is present in the sample under test, which is
often the case for targeted analysis (e.g., pipeline leakage detection in a chemical plant),
chromatogram aligning fails, as the detected peaks in the chromatogram have nothing
to align with. Second, foreign interferents cannot be filtered out. If an additional peak
is present in a chromatogram of the sample under test, it would be treated as one of the
target compounds (misalignment) and/or it may cause failure in alignment of the whole
chromatogram profile. Consequently, there has been an unmet need for an MS-free and
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chromatogram-based peak identification method that is able to identify any arbitrary subset
of the target compounds as well as to report interferents.

This paper proposes a retention time trajectory (RTT) matching method (Figure 1A)
for peak identification. With peak retention times as the only input, RTT matching can
identify peaks associated with any subset of target compounds, as well as filter interferents
outside of said targets. An RTT (Figure 1B) is made up of a series of retention times of all
compounds (peaks) in a chromatogram obtained under one set of experimental conditions
(such as ambient temperature, column temperature ramping profile, carrier gas flow rate,
etc.) and uniquely represents one particular condition. Similarities between the RTT for the
sample under test (RTTsample) and those pre-installed in the library (RTTlib) are globally
evaluated using a statistical expression, until an RTTsample that best matches an RTTlib is
found. In contrast to most existing MS-free chromatogram-aligning algorithms, our RTT
algorithm identifies peaks through simple matching instead of chromatogram aligning, that is,
our method does not align the chromatogram of the sample under test against the reference
chromatogram. Therefore, no mathematical warping or transformation is involved.
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togram, Chromatogram Y. The entire set of coordinates, (RTX,compound i, RTY,compound i), where “com-
pound i” refers to a specific compound, forms a trajectory (red curve) in 2D. (C) Conceptual illus-
tration of the RTTlib library, which is composed of multiple chromatograms obtained under various 
experimental conditions (column temperature ramping profiles, carrier gas flow rate, etc.) using a 
mixture containing all target compounds (and internal standards if needed). (D) RTT of Chromato-
gram X (RTTX), where the retention time values along the Y-axis exactly match those along the X-

Figure 1. Conceptual illustration of retention time trajectory (RTT) and corresponding library con-
struction. (A) Algorithm flow chart. (B) RTT of a chromatogram (Chromatogram Y)—RTTY. The
X-axis represents the retention time (RTX) from one of the chromatograms, which we call Chro-
matogram X. The colored dots along the X-axis represent different compounds and are numerically
labelled as 1, 2, 3, . . . , 11. Similarly, the Y-axis represents the retention time, RTY, in another chro-
matogram, Chromatogram Y. The entire set of coordinates, (RTX,compound i, RTY,compound i), where
“compound i” refers to a specific compound, forms a trajectory (red curve) in 2D. (C) Conceptual
illustration of the RTTlib library, which is composed of multiple chromatograms obtained under
various experimental conditions (column temperature ramping profiles, carrier gas flow rate, etc.)
using a mixture containing all target compounds (and internal standards if needed). (D) RTT of Chro-
matogram X (RTTX), where the retention time values along the Y-axis exactly match those along the
X-axis (i.e., the slope of RTTX is unity). Note that the RTT method, as shown in detail later, uses only
the discrete peak retention time values. Smooth curves drawn here are for visualization purposes.
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2. Retention Time Trajectory Matching Algorithm

A glossary of abbreviations and symbols is summarized in Section S1 in the Supple-
mentary Materials.

2.1. Overview

Between GC analytical runs, the retention time (RT) for a given compound may drift
due to perturbation of various physical factors, including ambient temperature, column
temperature programing profile, and carrier gas flow rate. The influence of these perturba-
tions on the analytes in a sample can be quite different due to their diverse characteristics
(such as volatility, polarity, functional groups, etc.). Consequently, the RT drifts of the
analytes in a chromatogram are often non-linear and unpredictable [21,33]. The RT devi-
ation (∆RT) against RT has been described using quadratic functions in PTW [20,21] or
local regression fitting (LOESS) in XCMS [33], which often over-simplifies the diverse and
complex nature of RT drifting. These methods are either limited to samples with the same
constitutions [21] or require MS-based peak matching before final aligning [33]. In contrast,
our RTT matching approach treats the RT drifts of all analytes (or peaks) in a chromatogram
as a whole cohesive entity rather than independent individuals. Instead of fitting the RT
drift with a mathematical formula, our RTT matching approach statistically compares the
similarities between the RTTsamples and the RTTlibs globally.

2.2. Construction of a Retention Time Trajectory (RTT)

First, we describe how to construct a library containing many RTTlibs. Let us assume
that we obtain multiple chromatograms under various experimental conditions, and each
chromatogram includes all compounds, i.e., target compounds and internal standard com-
pounds (if needed). The X-axis of Figure 1B represents the retention time (RTX) obtained
from one of the measured chromatograms, which we call Chromatogram X. The dots of dif-
ferent colors along the X-axis represent different compounds. RTs of any pre-characterized
chromatogram can be used as the X-axis. Similarly, the Y-axis represents the retention
time, RTY, in another chromatogram. Therefore, the set of coordinates, (RTX,compound i,
RTY,compound i), where “compound i” refers to a specific compound, forms a trajectory in a
two-dimensional (2D) diagram (Figure 1B), which we call retention time trajectory (RTT).
Each trajectory corresponds uniquely to a chromatogram obtained under a certain set of
conditions (temperature ramping, flow rate, etc.), and the entire set of trajectories in the 2D
diagram (i.e., the library of RTTlibs, Figure 1C) captures all chromatograms under various
experimental conditions. One special case is that Chromatogram X itself is represented by
a straight line at 45◦ with respect to the X-axis (Figure 1D), as the coordinates along the
X- and Y-axis exactly match each other. Ideally, the RTT library should contain an infinite
number of RTTs to reflect the infinite number of experimental conditions (for example,
the flow rate may vary by only 0.0001 mL/min and ramping temperature rate may vary
by 0.001 ◦C/min). However, as we will discuss later, a library containing a finite (small)
number of RTTs is sufficient for us to correctly identify peaks in a chromatogram for the
sample under test.

Construction of an RTTsample for a sample under test is similar (Figure 2A). Each
RTTsample is made up of a series of coordinates, (RTX,compound i, RTsample,peak j), where
RTsample, peak j refers to the retention time of a peak in the chromatogram obtained from
the sample under test (i.e., sample chromatogram). Note that the peaks in the sample
chromatogram may contain all target compounds plus some interferents or only a subset
of target compounds plus some interferents. Because the chemical identities of the detected
peaks are unknown before analysis, multiple RTTsamples may form for a given sample
chromatogram, each of which corresponds to one set of peak identification results. Our
goal is to eliminate all impossible RTTsamples and find the one that best matches one of the
RTTlibs in the library.
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Figure 2. Conceptual illustration of the generation of an RTT for a sample under test, RTTsample.
(A) A retention time matrix formed by RTX and RTsample of the same compounds. Suppose there
are a total of Ntgt target analytes (colored dots along the X-axis) and a total of Nsample peaks in the
sample chromatogram (grey dots denoted from A to E along the Y-axis). A matrix of Ntgt × Nsample

coordinates (black dots) can be formed. The two black curves show two exemplary RTTsamples formed
by connecting one dot on each row. (B,C) Two sets of black dots fall simultaneously on two different
RTTlibs, suggesting that two RTTsamples are found to match two different RTTlibs, which leads to two
different chemical identification results. Accordingly, Peaks A-E are identified as Compounds 3, 4, 5,
7, and 10 in (B), and Compounds 3, 4, 6, 8, and 10 in (C), respectively. (D) An internal standard (grey
cross) anchors one of the RTTlibs (plotted in blue), thus producing unique chemical identification.

2.3. General Description of the RTT Matching Approach

In general, our RTT matching approach involves four steps:

(1) Experimentally generate multiple chromatograms under various experimental con-
ditions (temperature ramping profiles, flow rate, etc.) using a mixture that contains
all target compounds and internal standards (if needed). Retention times in each
chromatogram are extracted, which form the RTTlibs (see Figure 1C) pre-installed in
the library. Note that the chemical identities of all peaks in any RTTlib are known.

(2) Create all possible RTTsamples from the chromatogram obtained from the sample
under test (see Figure 2). Note that the test sample may contain only a subset of the
target compounds along with some interferents.

(3) Eliminate the RTTsamples that violate certain rules, which expedites computation.
(4) Compare all possible RTTsampes with the RTTlibs in the library one by one in terms of

similarities. Find the RTTsample that best matches one of the RTTlibs and then extract
the chemical identities for the detected peaks accordingly. Again, our method does
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not align the peaks in the sample chromatogram against those in the chromatograms
in the library.

In the next section, the following two cases will be considered. (I) Only a subset
of compounds of interest (target compounds) and internal standards (if needed) are
present in the sample chromatogram. (II) A few chemical interferents are present in
the sample chromatogram.

2.4. Case I: Sample Containing Only a Subset of Target Compounds
2.4.1. Construction of Possible RTTsamples

Consider a sample under test that has no interferents present (i.e., all detected peaks
are a subset of the target compounds). We assume that there are a total of Ntgt target
compounds and that Nsample peaks are detected in the sample under test. If Nsample = Ntgt,
then all Nsample peaks can be identified easily by examining the peak elution order.

We now consider only the situation in which Nsample < Ntgt, that is, only a subset
of analytes are present in the sample chromatogram. A matrix with Ntgt × Nsample in-
tersections (coordinates) is then formed in the 2D diagram (marked as black dots, i.e.,
coordinates in Figure 2A), because each peak in the sample under test is unknown before
final identification and, in principle, can be any of the Ntgt target compounds. Conse-

quently, a total of C
(

Ntgt, Nsample

)
sets of RTTsamples can be formed by connecting one

black dot in each of the Nsample rows, two of which are exemplified as black lines in

Figure 2A. C
(

Ntgt, Nsample

)
=

Ntgt!

(Ntgt−Nsample)!Nsample!
is a combinatorial number and can be

extremely large when Ntgt is above 20 and Nsample is around half of Ntgt (for example,
C(20,10) = 184,756).

However, not all C
(

Ntgt, Nsample

)
RTTsamples are possible, and many need to be elimi-

nated before the comparison with the RTTlibs in the library, which expedites computation
and avoids false identifications. The elimination rules are described as follows:

(1) One target compound can only be mapped to one peak in the sample chromatogram.
Therefore, any RTTsample with a vertical section between any two consecutive coor-
dinates (or intersections) in the 2D diagram should be eliminated, as illustrated in
Figure S2A.

(2) The elution order should be preserved. Therefore, any RTTsample with a section that
has a negative slope between two consecutive coordinates (i.e., opposite elution order
in library and sample chromatograms) should be eliminated. This is illustrated in
Figure S2B.

(3) The RT drifts arise from minor perturbation, and the resulting deviations (∆RT) should
be small values within a certain range. Therefore, only coordinates falling within
the cutoff range of RTsample ± ∆t should be considered (Figure S2C). The value of
∆t can be estimated empirically. For example, sample chromatograms with larger
drifts require sufficiently large ∆t (e.g., larger than typical RT drifting range in the
RTT library). Note that the RTT matching algorithm is still able to effectively identify
the peaks even without applying this criterion, but a reasonable estimation of ∆t
significantly reduces the computational cost by narrowing down possible RTTsamples.

Once all possible RTTsamples are formed (and all impossible RTTsamples are eliminated),
each individual RTTsample should be compared with all RTTlibs in the library to find the
best-matched RTTsample. In other words, we need to find which set of coordinates in
Figure 2A falls on one red RTTlib in Figure 1C. Assuming a total of nlib RTTlibs stored
in the library and nsample possible RTTsamples generated from the sample chromatogram,
nlib × nsample pairs of RTTlib and RTTsample are formed and compared with each other. For
example, by comparing the trajectories in Figure 1C, two groups of black dots, which
are composed of two different RTTsamples, fall simultaneously on two different RTTlibs
(Figure 2B,C) and yield different chemical identification results for Peaks C and D. These
are either Compounds 5 and 7 (Figure 2B) or 6 and 8 (Figure 2C).
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To circumvent this, we introduce internal standard compounds (i.e., internal standards)
outside of the list of target compounds to anchor the RTTlibs. In both RTTlib library
preparation and actual measurement of the test sample, the internal standard(s) are spiked
into the mixture containing all target compounds (for RTTlib library preparation) or the
sample under test. The peaks corresponding to these standards are identified during the
data preprocessing and then used to generate the RTT along with all other peaks. As
depicted in Figure 2D, when an internal standard (marked as a grey cross) is introduced,
only one of the two RTTlibs can be anchored (blue line) and thus a unique set of identification
results is obtained.

Note that while our RTT matching method, as shown later, works well even without
using any internal standard, introduction of an internal standard(s) can further increase
identification accuracy and significantly expedite computation by narrowing down possible
RTTsamples and RTTlibs due to the following reasons. (1) All possible RTTsamples and all
RTTlibs must go through the coordinate(s) formed by the internal standard(s). (2) Because
the elution order is preserved, the whole 2D diagram can be divided into small regions
determined by the internal standards’ coordinates, and only the RTTsamples falling within
these regions are possible candidates (Figure S3A). (3) When there is only a single analyte
in the test sample, identification of this peak in the chromatogram is nearly impossible
without internal standard(s), as formation of an RTT requires at least two coordinates. The
addition of one or more coordinates resulting from the internal standards allows for the
creation of the RTTsamples with more accurate identification of the single peak. (4) Misiden-
tification can be significantly reduced even when the chromatogram-to-chromatogram
RT drift of the same compound is greater than the distance between two adjacent peaks
(Figure S3B), which has long been the bottleneck of many peak-matching or profile-aligning
algorithms [33]. In practice, internal standards can be strategically positioned in the re-
gion with more drastic variations to more effectively narrow down RTTsample and RTTlib
selection (Figure S3C). Note that, similar to all internal-standard-based chromatographic
analysis methods, the addition of internal standards might potentially worsen the co-
elution issues with the neighboring target compounds. To avoid this, internal standards
whose RTs fall in the chromatogram sections with low peak densities are preferred.

Internal standards have commonly been utilized by many aligning algorithms [34,35],
in which RT drift is corrected by firstly dividing the chromatogram into multiple sections
delineated by the standards and secondly applying linear stretching/compressing in each
section (Figure S4). However, these methods cannot account for the various non-linear drifts
that often occur between any two standards. To make the linear stretching/compressing
more accurate, more internal standards need to be introduced to reduce the section size
to the point that linear approximation within each section is valid. This makes both
sample preparation and peak identification much more complicated. More advanced
techniques employ polynomial fitting within each section to account for non-linearity.
However, polynomial fitting highly depends on experimental conditions and is required
for each section in a chromatogram, thus hampering automation in peak identification.
In contrast, as discussed in detail later, our approach compares the retention times of
the chromatogram (or its corresponding RTT) globally, which automatically takes into
account any non-linearities within each section. To demonstrate the advantages of RTT
matching, we use the same sample and internal standards to compare the performance
of the RTT matching approach and linear warping (see examples in Table S5), as well as
correlation optimized warping (COW, see examples in Figures S8 and S9, and Table S4 in
the Supplementary Materials).

2.4.2. Statistical Method for RTT Similarity Comparison—Least Mean Squared Residual (MSR)

As mentioned previously, while coordinates in the X-axis are discrete, their variation
along the Y-axis is continuous due to continuously varying experimental conditions. In
theory, the number of the RTTlibs is infinite. In practice, only a limited number of conditions,
and, hence, a limited number of RTTlibs, can be characterized and stored. Consequently,
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while the RTTsample for the sample under test may not exactly match any RTTlib stored in
the library, the most similar one can still be easily found. To globally compare similarities
between an RTTsample and an RTTlib, we calculate the mean squared residuals (MSR) of
RTs from the same compounds between these two trajectories, as illustrated in Figure 3.
A smaller MSR indicates higher similarity between two trajectories, as exemplified in
Figure 3B, where RTTlib(3) is the most similar to the RTTsample in the figure. The MSR
is normalized (or scaled) from the sum of squared residuals (SSR) by the total number
of paired compounds in order to ensure that it does not grow as the number of pairs
grows. This is important when we need to compare RTTsamples with different numbers of
target compounds; for example, when an RTTsample of six target compounds is compared
with an RTTsample of five target compounds plus one interferent (the case of interferent
identification will be discussed later).
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Figure 3. MSR or SSR calculation. (A) Illustration of calculating the SSRstd between an RTTsample and
RTTlib(4) using the internal standards for RTTlibs screening. All RTTsamples must pass through the two
large solid grey crosses, which indicate the RTs of the internal standards in the sample chromatogram.
The smaller hollow grey crosses indicate the RTs of the internal standards in the RTTlibs. The internal
standard retention time residuals are marked by blue arrows. Half of the RTTlibs with the lowest
SSRstds (i.e., RTTlib(2), RTTlib(3), and RTTlib(4)) are kept and used for the next step described in (B).
(B) Calculation of the MSR between an RTTsample and an RTTlib screened in (A) using both target
compounds and internal standards. This process quantifies the similarities between the two RTTs
under comparison (i.e., one RTTsample and one RTTlib). The RTTsample (black curve) is formed by
pairing Peaks A to E with target Compounds 3, 4, 5, 7, and 10. The retention time residual of the same
compound is marked by a blue arrow. (C) Interferent identification. One RTTsample (black curve) is
formed by pairing Peaks A to E with target Compounds 3, 4, 5, 9, and 10, respectively, and is further
compared with RTTlib(3) (red curve). The retention time residual between Peak D and Compound 9 is
much larger than those of other pairs. The physical interpretation is that the coordinates associated
with Peaks A, B, C, and E in one RTTsample closely match those on RTTlib(3). However, Peak D
deviates far from RTTlib(3), likely identifying Peak D as an interferent, and identifying Peaks A, B, C,
and E as Compounds 3, 4, 5, and 10, respectively.

In order to expedite the computation, it is not necessary to compare each RTTsample
with all RTTlibs. Instead, we can first use internal standard RTs to anchor the best matching
sets of RTTlibs by calculating the SSR of the internal standards (SSRstd), as shown in
Figure 3A. Because all possible RTTsamples must go through the coordinates formed by
the internal standards, they have the same SSRstd for a given RTTlib(i), where i refers to a
specific pre-characterized RTTlib. Assuming that there are a total of Nstd internal standards,
the SSRstd between any RTTsample and an RTTlib(i), denoted as SSRstd

lib(i), can be calculated as

SSRstd
lib(i) =

Nstd

∑
k=1

(
RTstd(k)

lib(i) − RTstd(k)
sample

)2
,
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where RTstd(k)
lib(i) is the retention time of one internal standard, k, in RTTlib(i), and RTstd(k)

sample is

the retention time of the same internal standard in the sample chromatogram. The SSRstd

of all RTTlibs are sorted in ascending order, with the top ones, which have the least SSRstds,
giving the potentially matched RTTlibs. All other RTTlibs in the library, which have higher
SSRstds, can be eliminated.

Next, the RTTsample and RTTlib are further compared, based on retention times of both
internal standards and target compounds, by sorting the MSR (Figure 3B). In this step,
only the top RTTlibs (e.g., the first half or the top 20 RTTlibs) with the lowest SSRstds are
selected. Assuming that, in addition to Nstd internal standards, there are Nsample peaks to be
identified in the test sample, the MSR between one RTTlib (denoted as RTTlib(i)) and one
RTTsample (denoted as RTTsample(j)) can be calculated as

MSR =
SSRlib(i),sample(j)

Nstd+Nsample

= (SSRstd
lib(i) +

Nsample

∑
l=1

(
RTcompound(l)

lib(i) − RTcompound(l)
sample(j)

)2
)

/
(Nstd + Nsample),

where RTcompound(l)
lib(i) is the retention time of the Compound l in RTTlib(i), and RTcompound(l)

sample(j)
is the retention time of a peak in the sample chromatogram that is hypothetically as-
signed to the same compound (i.e., Compound l) in RTTsample(j). Note that all RTTsamples
have the same retention time for each peak, but each peak can hypothetically be paired
with a different compound in different RTTsamples, which has been discussed previously
(e.g., Figure 2A). The MSR of all RTTlibs are sorted in ascending order. The first in the list
has the minimum MSR value denoted as MSRsample(j), min, which is generated by the RTTlib
that best matches RTTsample(j).

Because each RTTsample is formed by pairing the detected peaks with one set of target
compounds, it represents one set of peak identification results. For any RTTsample, which
we call RTTsample(j), the best-matched RTTlib can be found by screening all RTTlibs in the
library and finding the one that generates MSR sample(j), min. If there is another RTTsample,
denoted as RTTsample(k), that has MSRsample(k),min smaller than MSRsample(j),min, it means
that RTTsample(k) is a better match with one of the RTTlibs in the library. Therefore, the
corresponding peak identification results from RTTsample(k) are more accurate than those
from RTTsample(j).

2.5. Case II: Sample Containing Interferents

In targeted analysis, interferents are the compounds not on the list of the target
compounds and need to be filtered out (or reported). In our algorithm, two criteria are
used to identify the presence of interferents. First, for a particular peak in the sample
chromatogram, if none of the retention time values in the RTTlibs fall in the range of
RTpeak ± ∆t, this peak is identified as an interferent. The value of ∆t can be chosen
empirically and can be set higher than a typical retention time drift range. Second, for one
particular pair of RTTlib(i) and RTTsample(j), and if the squared residual between one peak
(for example, Peak D in Figure 3C) in RTTsample(j) and its paired compound (Compound
9 in Figure 3C) in RTTlib(i) is much larger (e.g., twice) than MSRlib(i),sample(j), it is highly
likely that this peak is an interferent. The validity of this approach lies in the fact that all
other coordinates formed by the detected peaks and their paired target compounds match
well with RTTlib(j), except for the one formed by Peak D paired with Compound 9. A new
MSRlib(i),sample(j) is then calculated by normalizing SSRlib(i),sample(j), which excludes residuals
from all identified interferents, with Nstd + Nsample − Ninter f (Ninter f is the total number
of identified interferents). Based on this, all possible peak identification results, with or
without interferents, can be ranked by MSRs. The results with the smallest MSR give the
highest confidence level.
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3. Experimental Section
3.1. Chromatogram Generation

Our RTT approach is validated using nine chromatograms obtained with NovaTest
P300 GC provided by Nanova Environmental, Inc., which is equipped with a 6 m long
Rtx-VMS column (Restek, Bellefonte, PA, USA) and a microfluidic photoionization detector
developed in-house [36]. The chromatograms were generated under the same nominal
experimental setting (carrier gas: helium; flow rate: 3.5 mL/min; temperature programming
profile: 40 ◦C held for 5 min, ramped to 70 ◦C at 30 ◦C/min, held for 2 min, then ramped
to 150 ◦C at 30 ◦C/min, and held for 1 min). The injected mixture is part of EPA Method
TO-14. Exemplary chromatograms are presented in Figure 4A, and corresponding peak
information is listed in Table S1.
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Figure 4. Experimentally generated chromatograms and corresponding RTTlibs for algorithm val-
idation. (A) Four exemplary chromatograms (Chrom1, Chrom3, Chrom8, and Chrom9) obtained
experimentally. There are a total of 22 detected peaks in each chromatogram. A total of 2 out of
the 22 peaks are treated as internal standards (labeled as std1 and std2 in green). The remaining
peaks are treated as target compounds for peak identification in targeted analysis. Peaks of the same
compounds are labeled with compound IDs from 1 to 20 (grey bar). (B) RTTlib library formed by
RTTlibs (RTT1–6) generated from Chrom1–6. The X-axis represents retention time in Chrom1. The
Y-axis represents retention times in Chrom1–6. The retention time deviation (∆RT) of Chrom1–9

against the RT in Chrom1 is plotted in Figure S5.
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3.2. Chromatogram Preprocessing

Detection of a peak in a chromatogram is accomplished by scanning for local maxima
and the associated peak apex positions (i.e., retention times) [37]. A series of retention
times are extracted, which are used to form the RTTlibs or RTTsamples in the next section.
Therefore, the cumbersome chromatographic data (a large 2D array of detection signals)
are converted to a simple list of retention times, which significantly reduces data storage
and processing workload. Extensive preprocessing (e.g., baseline removal) and broad
background variations can also be eliminated because only the local maxima (i.e., peak
apexes) are extracted.

4. Validation Results

Out of nine experimentally generated chromatograms, six chromatograms (denoted as
Chrom1–6) are used in the library, forming RTTlibs (Figure 4B). The remaining three (denoted
as Chrom7–9) are used to generate tests to validate our approach in various scenarios.

Detailed validation test design is described in Section S2 in the Supplementary Materials.
There are a total of 22 peaks in each measured chromatogram, among which 20 are treated as
target compounds and the other two are used as the internal standards. The retention times
and compound IDs of Chrom1 are summarized in Table S1. The RT deviation (∆RT) against
the RT in Chrom1 for all chromatograms (Chrom1–9) is plotted in Figure S5, showing strong
non-linear drifting behavior. Note that while the chemical names for most compounds are
provided by the vendor and further confirmed by injecting individual compounds, which are
given in the third column in Table S1, the chemical identities of the first and the third eluted
peaks are unknown (which might result from contamination and are only designated as ID
1 and ID 3, respectively). Nevertheless, the results presented in this work remain the same
regardless of whether the chemical names of those compounds are known.

In total, 3×∑20
i=1[C(20, i)] = 3.15× 105 validation tests were generated from Chrom7–9,

covering all subsets of the 20 target compounds (ranging from single compounds to
20 compounds). Moreover, three additional validation tests were generated, representing
samples with a subset of target compounds and interferent(s). In all 3.15 × 105 valida-
tion tests, peak identifications achieved 100% accuracy. Here, we present detailed results
of 11 representative tests, covering various MS-free chromatographic analysis scenarios,
i.e., (1) different levels of retention time (RT) drift, (2) different numbers of the target com-
pounds in the sample under test, and (3) samples containing interferents.

4.1. Identification of Target Compounds in Sample under Test without Interferents

To validate our algorithm, we first discuss the scenarios in which no interferents are
present and all the detected peaks are a subset of the target compounds. As shown in
Table 1, based on the RTs in Chrom7 and Chrom8, six groups of RTs are generated, three
from Chrom7 (Table 1A) and three from Chrom8 (Table 1B), for six tests. They represent
six different samples under test that contain various subsets of the target compounds (the
number of the target compounds ranges from 1 to 13 out of a total of 20 target compounds),
along with two internal standards (std1 and std2). Note that the retention time deviation in
Chrom7 is within the range of the RT deviations in the chromatograms (Chrom1–6) stored
in the library, whereas the retention time deviation in Chrom8 is slightly out of this range
(Figure S5). For each test, the four best peak identification results are enumerated based
on the MSR ranking (Table 1). The peaks in all six tests are successfully identified with
the top result (i.e., smallest MSR) producing 100% accuracy. The 2nd-4th best results in
each test also correctly identify most of the peaks with the best ones giving 100% accuracy
and the worst ones misidentifying only one peak. Note that even a single-species sample
(Compound 7 in Test 6) can be correctly identified due to the use of internal standards,
despite it being very close to neighboring Compound 8. This is impossible for all warping-
based chromatogram-aligning approaches, because the peak has nothing to be aligned with.
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Table 1. Algorithm experimental design and peak identification results with a sample containing
only the target compounds. The peaks listed in Tests 1–3 are generated from Chrom7; the peaks listed
in Tests 4–6 are generated from Chrom8. An asterisk “*” denotes peak misidentification.

(A)
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7

Te
st

1

Retention time (s) 13.8 19 33.5 43.7 85.6 108.5 115 183.6 213.3 412.7 616

Compound ID 1 2 4 5 7 9 10 12 14 17 20

Ranking MSR Accuracy Individual peak identification result

1st 0.57 100% 1 2 4 5 7 9 10 12 14 17 20

2nd 0.71 100% 1 2 4 5 7 9 10 12 14 17 20

3rd 0.91 100% 1 2 4 5 7 9 10 12 14 17 20

4th 2.2 90.9% 1 3 * 4 5 7 9 10 12 14 17 20

Te
st

2

Retention time (s) 19 33.5 43.7 85.6 93.8 108.5 115 139.3 195.2 213.3 264 381.3 412.7

Compound ID 2 4 5 7 8 9 10 11 13 14 15 16 17

Ranking MSR Accuracy Individual peak identification result

1st 0.67 100% 2 4 5 7 8 9 10 11 13 14 15 16 17

2nd 0.74 100% 2 4 5 7 8 9 10 11 13 14 15 16 17

3rd 1.14 100% 2 4 5 7 8 9 10 11 13 14 15 16 17

4th 2.15 92.3% 3 * 4 5 7 8 9 10 11 13 14 15 16 17

Te
st

3

Retention time (s) 85.6 108.5 195.2 381.3 428.2

Compound ID 7 9 13 16 18

Ranking MSR Accuracy Individual peak identification result

1st 0.88 100% 7 9 13 16 18

2nd 0.94 100% 7 9 13 16 18

3rd 1.48 100% 7 9 13 16 18

4th 5.74 100% 7 9 13 16 18

(B)

Te
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C
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8

Te
st

4

Retention time (s) 34.1 44.6 96.2 111.4 142.9 188.4 218.6 384.8 432.6

Compound ID 4 5 8 9 11 12 14 16 18

Ranking MSR Accuracy Individual peak identification result

1st 2.42 100% 4 5 8 9 11 12 14 16 18

2nd 2.86 100% 4 5 8 9 11 12 14 16 18

3rd 3.34 100% 4 5 8 9 11 12 14 16 18

4th 5.06 88.9% 4 5 8 10
* 11 12 14 16 18

Te
st

5

Retention Time (s) 87.9 111.4 218.6 384.8 432.6

Compound ID 7 9 14 16 18

Ranking MSR Accuracy Individual peak identification result

1st 2.99 100% 7 9 14 16 18

2nd 3.74 100% 7 9 14 16 18

3rd 4.28 100% 7 9 14 16 18

4th 7.14 80% 7 10 * 14 16 18

Te
st

6

Retention time (s) 87.9

Compound ID 7

Ranking MSR Accuracy Individual peak identification result

1st 3.80 100% 7

2nd 5.10 100% 7

3rd 5.80 100% 7

4th 16.75 100% 7

4.2. Identification of Target Compounds in Sample under Test with Interferents

Another three validation experiments (Tests 7–9 in Table S2) were generated based
on the RTs in Chrom8, which mimic scenarios in which both a subset of target analytes
and interferents are present in the sample under test. In Tests 7 and 8, one hypothetical
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interferent peak was added at 340 s (for Test 7) and 449 s (for Test 8). In particular, the
interferent peak at 449 s was very close to the target Compound 19. In both cases, the top
identification result successfully identified all target compounds and singled out interferent
related peaks with 100% accuracy. In Test 9, two hypothetical interferent peaks were added
at 62 s and 395 s, which were very close to target Compounds 6 and 16, respectively. Both
interferents and all target compounds were correctly identified. Like all other RT-based
peak identification methods discussed previously, the RTT-matching-based interferent
identification works only when RTinterferent is sufficiently different from those of target
compounds. If RTinterferent is the same as or extremely close to any target compound, the
interferent cannot be identified. Additionally, the majority of the peaks in the sample under
test should be the target compounds. If most peaks are interferents and only a few target
compounds are present, the validity of our method may decrease, because the residuals of
most peaks are very large. One way to circumvent these issues is to further enrich the RTT
library, either experimentally or through the RTT hybridization discussed in Section 4.3.
Introducing more internal standards may also be helpful.

It is also worth noting that the RTT matching approach is intended for the scenar-
ios where RT drifts are caused by only minor fluctuations in experimental conditions,
and, therefore, the elution order is expected to be preserved among the measurements.
When the experimental condition varies drastically (e.g., major changes in the device
settings or ambient temperatures), the elution order may switch. Therefore, a new RTT
library needs to be constructed under the new experimental conditions to avoid misalign-
ment/misidentification in the RTT matching approach.

The above two issues (i.e., serious co-elution and elution order change) have always
been the bottleneck for all existing MS-free chromatogram-aligning algorithms. MS (and
other spectroscopic methods such as infrared absorption spectroscopy and Raman spec-
troscopy) would potentially be needed for peak identification in these cases.

4.3. Identification of Target Compounds in Sample under Test with Severe RT Drifts

An ideal RTT library should contain all possible RTTlibs that cover all possible drift-
inducing conditions. If the library has only a limited number of RTTlibs and when the
RT drift in a sample chromatogram (or RT deviation) exceeds the RT deviations covered
by the RTTlibs, peak misidentification may occur, as exemplified by Tests 10 and 11 in
Table S3. One method to expand the library is to experimentally generate as many RTTlibs as
possible by varying the experimental conditions around the nominal conditions. However,
this is extremely labor-intensive and difficult to realize. Alternatively, new RTTlibs can
be generated and added to the library by linearly hybridizing existing experimentally
obtained RTTlibs. This method is valid because the retention time drift is caused by minor
fluctuations of system’s physical factors, and such a small perturbation in the retention
time of one particular compound from one state (one RT) to another state (another RT) can
be simplified as linear variation. RTT linear hybridization can be performed using two,
three, or more existing experimentally obtained RTTlibs, i.e.,

C1 × RTcompound(i)
lib(a) + C2 × RTcompound(i)

lib(b) ,

or
C1 × RTcompound(i)

lib(a) + C2 × RTcompound(i)
lib(b) + C3 × RTcompound(i)

lib(c) ,

where C1, C2, and C3 are the linear coefficients, and RTcompound(i)
lib(a) refers to the retention time

for Compound i in one of the RTTlibs (i.e., RTTlib(a)). The hybridization can easily generate
more RTTlibs of the intermediate states that may be difficult to obtain experimentally (due
to either time limitations and/or difficulty in realizing the exact experimental conditions),
which significantly increases the tolerance to more severe RT drifts. Note that the RT
variation of one particular compound from one state to another is simplified to be linear,
although ∆RT against RT in one chromatogram is generally non-linear.
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In the current work, in order to validate the hybridization method, we use two-RTT
hybridization based on the following three formulas: (1)

(
RTcompound(i)

lib(a) + RTcompound(i)
lib(b)

)
/2,

(2) 2RTcompound(i)
lib(a) − RTcompound(i)

lib(b) , and (3) 2RTcompound(i)
lib(b) − RTcompound(i)

lib(a) . These are used to
enrich the RTTlibs in the library (see Figure S6), where RTTlib(a) and RTTlib(b) are selected
from the Chrom1–6 that are experimentally generated. Two tests (Tests 10 and 11) are
generated based on Chrom9, which has much more severe RT drift than Chrom7–8 and any
pre-characterized chromatograms (Chrom1–6) in the library (see Figure S5). As shown in
Table S3, when the RTT library contained only the experimentally generated RTTlibs, it
failed to correctly identify all peaks in either Test 9 or 10. In contrast, with more RTTlibs
added through hybridization, all peaks were successfully identified with 100% accuracy.
The accuracy of the 2nd–4th identification results in both tests were also increased.

4.4. Comparison with Other Chromatogram-Aligning Approaches

In order to compare peak identification performance with other chromatogram-
aligning approaches, parts of the above validation tests are also performed with the whole-
chromatogram-based COW [19,20] method and two peak-list-based aligning methods,
namely the internal-standard-based linear warping approach and fast PTW [22]. Again, it
is worth emphasizing that our RTT algorithm identifies peaks through matching instead of
chromatogram aligning.

For a chromatogram-aligning method to work, we use Chrom1 (or its corresponding
peak list) as the reference for other chromatograms (i.e., sample chromatograms) to align
with. Tests 5 and 7 (based on Chrom8), which represent samples without and with an
interferent, respectively, are used to evaluate COW and linear warping. The retention times
after COW or linear warping [35] are summarized in Table S4 and Table S5, respectively.
Note that in the reference chromatogram (i.e., Chrom1), all the peaks are present, including
all target compounds and internal standards. The sample chromatograms, which are to be
aligned and identified, are reconstructed from Chrom8, but contain only the peaks listed in
Tests 5 and 7. The remaining peaks in Chrom8 are replaced with the baseline (see Section
S3 in the Supplementary Materials for details of sample chromatogram reconstruction).

The COW aligning results can be highly parameter-dependent [19]. When the peak
compositions in the reference and sample chromatograms are the same, optimal parameters
can be easily chosen so that the apex positions of the peaks of the same elution order in
the sample chromatogram and the reference chromatogram coincide. However, in the
presence of only a subset of the target compounds in the sample under test (as in Tests
5 and 7), the peak in the sample chromatogram has no specific target peak to align to,
and, therefore, the COW alignment parameter selection becomes dubious. Similarly, the
interferent peak (as in Test 7) might be misaligned to one of the target compound peaks in
the reference chromatogram. Multiple COW alignments with various tuning parameters
(slack and correlation power) were conducted. The identification results based on the RTs
extracted from the aligned Chromsample are summarized in Table S4. Out of the seven
peaks in Test 5, the best COW aligning correctly identifies only five peaks (slack = 4 and
correlation power = 3) and the worst aligning fails to align any of the peaks (slack = 1
and correlation power = 1; slack = 2 and correlation power = 2). For Test 7, the highest
identification accuracy reaches only 50% (slack = 4 and correlation power = 3) and the
worst aligning fails with the whole chromatogram (slack = 1 and correlation power = 1;
slack = 2 and correlation power = 2).

For the internal-standard-based linear warping method (Table S5), the same internal
standards (std1 and std2) were employed. After alignment, none of the target compound-
associated peaks yields the same RT as in the reference chromatogram (Chrom1). Therefore,
peak identification for target compounds fails when RT values are compared (all peaks are
identified as interferents, except the interferent peak itself).

Additionally, we compared the peak identification performance of the fast PTW
algorithm [22], which is a further development of the original PTW [21], and the algorithm
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input was the chromatogram peak list (retention times and peak heights). The peak lists
in Chrom1, which was treated as the reference chromatogram, and Chrom8,9, which were
used to generate Tests 5, 7, 10, and 11, are summarized in Table S6A. The time warping
results (order = 2 or 3) using the full peak lists in Chrom8,9 are summarized in Table S6A.
Although misalignments were greatly reduced after fast PTW aligning, sub-second to
seconds of RT difference for the same compound persists. Table S6B summarizes the fast
PTW aligning results (order = 2 or 3) of Tests 5, 7, 10, and 11. Tests 5, 10, and 11 represent
samples with only a subset of target compounds; Test 7 represents a sample with a subset
of target compounds and an interferent. The fast PTW fails to identify the correct peaks in
all four tests. In comparison with the reference chromatogram, the RT differences in the
same compound in the warped sample peak list fell in the range of sub-seconds (which
could be solved by data clustering) to hundreds of seconds (which completely fails in peak
identification). We also noticed that the warped RTs of some peaks gave unreasonable
negative values (e.g., Compound 1 in Test 10, with order = 2, and Compound 17 in Test 10,
with order = 3).

4.5. Further Validation with Fruit Metabolomics Data

Two publicly available liquid chromatography (LC) fruit metabolomics datasets from
the Metabolights repository (http://www.ebi.ac.uk/metabolights, accessed on 10 March
2021) with identifiers MTBLS99 and MTBLS85 are used to generate additional validation
tests. This demonstrates the application of the RTT matching algorithm to complicated sam-
ples and other chromatographic techniques. The first dataset consists of LC measurements
of a pooled sample that was injected regularly as a quality control during the measurements
of apple extracts (Figure S10A). The second dataset is from LC measurements of carotenoids
in grape samples (Figure S10B). The test design and results are summarized in Section S4 in
the Supplementary Materials. In all of the two trillion designed validation tests, all peaks
associated with the target compounds were correctly identified.

5. Discussion and Conclusions

We have described in detail and validated a new RTT matching approach for the
identification of target compounds and the detection of interferents. This approach has the
following advantages. First and foremost, the matching is conducted between the entire
trajectories (RTTsample and RTTlib) rather than between the individual peaks in the sample
and those in the reference chromatogram. Second, simple statistics are used, which avoids
time-consuming training or feature extraction used in machine learning [28,31,32]. The
MSR is adopted to describe the similarities between RTTs, which works well with the chro-
matograms obtained in this article. Other statistical approaches, such as linear regression,
can also be introduced within the framework of RTT matching. Third, hybridization of
RTTlibs greatly expands the RTT library, which not only increases the tolerance to more
serious drifting but also significantly reduces the cost for RTTlib generation through actual
experimentation. In this work, each hybridized RTTlib is generated out of two experimen-
tally obtained RTTlibs. Depending on the complexities of the subjects to be analyzed, a
larger number of experimentally obtained RTTlibs could be used, and the linear coefficients
could be further tuned. Fourth, the only input variables are the retention times of each peak
instead of the whole peak profile or mass spectra, making the RTT approach insensitive to
concentration or background variations and eliminating the need for bulky instruments,
such as mass spectroscopy. All the above features make RTT matching highly amenable to
automation with a low computation cost. Additionally, the method described here can be
easily translated to other chromatographic techniques (e.g., ion exchange chromatography)
and has great potential to be applied to other spectral data (e.g., nuclear magnetic reso-
nance spectroscopy). Finally, the introduction of internal standards, though contributing
to increasing identification accuracy and computation efficiency, are not always necessary.
When an increased number of target compounds are present in the sample under test,
the contribution of the standard(s) becomes less prominent. To validate this, 10 of the
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validation test examples in the above discussions, except the single-species sample in Test 6,
have been re-performed with RTT matching without the use of any internal standards. All
of the peaks were correctly identified. Our current work is focused on the RTT matching for
one-dimensional chromatography. However, the same idea and approach can be extended
to multi-dimensional chromatography, such as comprehensive 2D GC.

Finally, it is worth noting that the applications of the RTT matching approach are not
limited to just peak identification. The RTT matching approach can help in chromatogram
aligning. Briefly, one can choose any RTTlib as the reference chromatogram to extract RTs
of the target compounds. Each peak in the sample chromatogram is identified via the RTT
matching approach. The peak profile can be fitted by the exponentially modified Gaussian
(EMG) model, with apexes shifted to the positions as in the reference. Aligned sample
chromatograms can be formed by the summation of individual EMG reconstructed peaks.
A detailed description and an illustration are discussed in Section S5 and Figure S11.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/s23136029/s1 [19,20,22,37–40], Figure S1: Conceptual illustration of the
binning approach. Figure S2: Rules to eliminate impossible RTTsamples. Figure S3: Use of internal
standards. Figure S4: Conceptual illustration of peak aligning with the internal-standard-based linear
stretching/compressing approach using the RTT 2D diagram. Figure S5: Retention time deviation
(∆RT) of Chrom1–9 against the RT in Chrom1. Figure S6: Demonstration of RTTlibs hybridization.
Figure S7: Illustration of algorithm validation test design using Chrom8. Figure S8: Peak identification
using COW aligning with a sample containing a subset of target compounds (Test 5). Figure S9: Peak
identification using COW aligning with a sample containing a subset of target compounds plus one
interferent (Test 7). Figure S10: Fruit metabolomics chromatograms for RTT peak identification verifi-
cation. Figure S11: Chromatogram aligning enabled by RTT matching. Table S1: Peak retention times,
assigned compound IDs, and compound names in Chrom1. Table S2: Algorithm validation tests and the
corresponding peak identification results. Table S3: Algorithm validation tests and the corresponding
peak identification results when a sample chromatogram has severe RT drift issues. Table S4: Peak iden-
tification performance comparison with COW. Table S5: Peak identification performance comparison
with internal-standard-based linear warping. Table S6: Peak identification performance comparison
with fast PTW.

Author Contributions: Conceptualization, W.Z. and X.F.; methodology, W.Z. and X.F.; software, W.Z.;
validation, W.Z.; formal analysis, W.Z. and X.F.; resources, X.F.; data curation, W.Z., R.S., M.W.-H.L.
and X.F.; writing—original draft preparation, W.Z. and X.F.; writing—review and editing, W.Z.,
R.S., M.W.-H.L. and X.F.; supervision, X.F.; project administration, X.F.; funding acquisition, X.F. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Institute for Occupational Safety and Health
(NIOSH) via grant R01 OH011082-01A1 and the Office of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activity (IARPA) via contract FA8650-19-C-9101. The APC
was funded by the University of Michigan Richard A Auhll Professorship.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the support from the National Institute for Occupa-
tional Safety and Health (NIOSH) via grant R01 OH011082-01A1, the Beijing Institute for Collabo-
rative Innovation via the University of Michigan internal funding, and the Office of the Director of
National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) via contract
FA8650-19-C-9101. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwithstanding any copyright annotation
thereon. The authors acknowledge NGK Spark Plugs for the gift fund and Nanova Environmental,
Inc. for providing some of the chromatograms.

https://www.mdpi.com/article/10.3390/s23136029/s1
https://www.mdpi.com/article/10.3390/s23136029/s1


Sensors 2023, 23, 6029 17 of 18

Conflicts of Interest: Xudong Fan is an inventor of the microfluidic photoionization detector (PID)
that is licensed to Nanova Environmental Inc. The PID was used in a Nanova portable GC system to
generate the exemplary chromatograms analyzed and presented in this article.

References
1. Fischer, M.; Scholz-Böttcher, B.M. Microplastics Analysis in Environmental Samples-Recent Pyrolysis-Gas Chromatography-

Mass Spectrometry Method Improvements to Increase the Reliability of Mass-Related Data. Anal. Methods 2019, 11,
2489–2497. [CrossRef]

2. Santos, F.J.; Galceran, M.T. Modern Developments in Gas Chromatography-Mass Spectrometry-Based Environmental Analysis.
J. Chromatogr. A 2003, 1000, 125–151. [CrossRef]

3. Moularat, S.; Robine, E.; Ramalho, O.; Oturan, M.A. Detection of Fungal Development in a Closed Environment through the
Identification of Specific VOC: Demonstration of a Specific VOC Fingerprint for Fungal Development. Sci. Total Environ. 2008,
407, 139–146. [CrossRef]

4. Leidinger, M.; Sauerwald, T.; Reimringer, W.; Ventura, G.; Schütze, A. Selective Detection of Hazardous VOCs for Indoor Air
Quality Applications Using a Virtual Gas Sensor Array. J. Sens. Sens. Syst. 2014, 3, 253–263. [CrossRef]
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