Supplementary Information to

Retention time trajectory matching for peak identification in chromatographic analysis

Wenzhe Zang^{1,2,3}, Ruchi Sharma^{1,2,3}, Maxwell Wei-Hao Li^{1,2,3,4}, and Xudong Fan^{1,2,3}*

¹Department of Biomedical Engineering University of Michigan, 1101 Beal Avenue, Ann Arbor, Michigan 48109, United States

²Center for Wireless Integrated MicroSensing and Systems (WIMS²) University of Michigan Ann Arbor, Michigan 48109, United States

³Max Harry Weil Institute for Critical Care Research and Innovation University of Michigan, Ann Arbor, MI 48109, United States

⁴Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor, Michigan 48109, United States

*Corresponding author: xsfan@umich.edu

Abbreviation or symbols	Description
RT	Retention time of a compound, which is equal to the x-coordinate of the apex of the corresponding peak in a chromatogram.
ΔRT	The retention time deviation of the same compound in the chromatograms of different runs.
RTT	Retention time trajectory, which is made up of discrete points of retention time values of a list of compounds in a measured chromatogram.
RTT _{lib}	Retention time trajectory in a pre-characterized chromatogram installed in the library.
RTT _{sample}	Retention time trajectory for the chromatogram obtained from a sample under test, which is formed by pairing the detected peaks with a subset of target compounds.
N _{tgt}	Number of target analytes in a pre-determined list.
Nsample	Number of detected peaks in the chromatogram of the sample under test, with the added internal standards excluded.
Ninf	Number of interferents in the actual sample under test.
Nstd	Number of internal standard compounds.
nlib	Number of pre-characterized RTTs (RTT _{lib} s) in the library.
<i>n_{sample}</i>	Number of all possible RTTs generated from the chromatogram of the sample under test.
SSR	Sum of squared residuals of RTs from the same compounds between one RTT_{sample} and one RTT_{lib} . A residual is the difference between the RT (treated as observed value) of a peak in one sample chromatogram and the RT of paired compound in one RTT_{lib} (treated as predicted value).
MSR	Mean squared residual, which is the <i>SSR</i> normalized by the total of number of paired compounds.

Section S1. Glossary of abbreviations and symbols

Section S2. Algorithm validation tests generation

Depending on the number of target compounds, the sample for targeted analysis can be classified as: (1) all target compounds are present, (2) a subset of target compounds are present, and (3) a subset of target compounds as well as interferents are present. In the first scenario the peak identification can be easily achieved as the peaks in the sample chromatogram and in one pre-characterized chromatogram can be paired respectively (and therefore identified) based on the elution order. Peak identifications for samples of the other two scenarios are much more challenging, as the peaks can be paired with any subset of the target compounds. Therefore, in this work, we only discuss and show the details of 11 validation test results that fall under (2) and (3).

In our RTT matching method, the only inputs are the retention times. Therefore, one chromatogram, which is made up of a large 2D array of detection signal intensity vs. time, can be simplified as a list of retention times (Figure S7A). As the peak area and profile do not contribute to the peak identification, multiple algorithm validation tests can simply be generated from an actual chromatogram, which includes all target compounds and internal standards. This can be accomplished by selecting various subsets of the target compounds and adding hypothetical peak positions (*i.e.*, interferents), if needed.

In this work, a total of $3 \times \sum_{i=1}^{20} [C(20, i)] = 3.15 \times 10^5$ validation tests were generated out of Chrom₇₋₉, which cover *all* subsets of the 20 target compounds. Peak identifications in all validation tests achieved 100% accuracy. Particularly, 11 validation tests were selected and discussed in detail to represent samples of various compositions. Tests 1-3 (Table 1A) were generated from Chrom₇; Tests 4-9 (Tables 1B and S2) were generated from Chrom₈. Tests 10 and 11 (Table S3) were generated from Chrom₉. Peaks used in Tests 5-8 are exemplified in Figures S7B-E, respectively.

Section S3. Sample chromatogram reconstruction for COW aligning

Correlation optimized warping (COW) algorithm^{1,2} is commonly used for chromatogram aligning. In order to compare the peak identification performance of COW aligning with RTT matching, a sample chromatogram (*i.e.*, Chrom_{sample}) is reconstructed out of Chrom₈, where only peaks listed in the validation test (plus two internal standards) are kept and the rest are replaced with the baseline. Test 5 (a subset of target compounds) and 7 (a subset of target compounds plus one internal standard), which have been validated with the RTT matching approach, are also used to evaluate peak identification with COW aligning.

In this work, the following steps for Chrom_{sample} reconstruction were adopted. First, the opensource adaptive iterative reweighted Penalized Least Squares (airPLS) algorithm³ was used to correct baseline drifting, and the baseline signal was numerically centered around zero. Second, the signal was smoothed via locally weighted scatterplot smoothing (LOWESS)⁴ to further improve the signal-to-noise (S/N) ratio in Chrom₈. Next, the chromatogram curve was scanned for peak detection, where peak apex positions, peak heights and endpoints were extracted⁵. Each peak profile was fitted by an exponentially modified Gaussian (EMG) equation⁶. Finally, EMG expressions for all target compounds peaks listed in the validation tests (Tests 5 and 7), as well as two internal standards, were added to form a chromatogram (Chrom_{sample}) as the input for COW aligning. An artificial EMG expression was adopted to generate the interferent peak in Test 7. The Chrom_{samples} for Tests 5 and 7 are plotted in Figure S8 together with Chrom₈.

During COW aligning, Chrom₁, where all target compounds and internal standards are present, was treated as the reference chromatogram for sample chromatograms to align with. Peak identification can be achieved only when the peaks of identical compounds are well aligned between Chrom₁ and Chrom_{sample}. Multiple COW aligning with various tuning parameters (slack and correlation power) were conducted; the corresponding aligned Chrom_{samples} are plotted in Figures S8B-E and S9B-E. The identification results based on the retention times of the aligned Chrom_{sample} are summarized in Table S4.

Section S4. Fruit metabolomics datasets

Two publicly available fruit metabolomics datasets from the Metabolights repository (http://www.ebi.ac.uk/metabolights) with identifiers MTBLS99 and MTBLS85 were used to demonstrate the potential of RTT matching for complicated samples. The same datasets were also used previously for fast PTW algorithm validation⁷.

The first dataset consists of 23 measurements of a pooled sample that was injected regularly as a quality control (QC) during LC apple extracts measurements. The QC chromatograms are plotted in Figure S10A. The first 7 chromatogram sets (plotted in red) were used for RTT hybridization and subsequent RTT library construction. The remaining 16 chromatograms (plotted in blue) were used to generate validation tests. 40 peaks, which are marked with orange circles, were treated as the target compounds. 2 peaks, which are marked with green triangles, were used as internal standards. The remaining peaks show inconsistent elution pattern due to co-elution of different degrees across the chromatograms. They were therefore excluded from the target compound list. Following the same test design in Section S2, we chose target compound subsets containing 40, 30, 20, 10, and 5 target compounds and generated a total of $16 \times [C(40,40) + C(40,30) + C(40,20) + C(40,10) + C(40,5)] = 2.23 \times 10^{12}$ tests. All peaks in the validation tests were correctly identified with the RTT matching approach.

The second datasets are from 14-day LC measurements of carotenoids in grape samples. In the fast PTW work⁷, the data was clustered into 14 components according to spectral characteristics. Chromatograms in Component 7, which are plotted in Figure S10B, were used for validation. Similarly, chromatograms in the first 5 days (plotted in red) were used for RTT hybridization and subsequent RTT library construction. The remaining 9 chromatograms (plotted in blue) were used to generate validation tests. 13 peaks (marked with orange circles) were chosen as target compounds, and one peak (marked with green triangle) was used as the internal standard. Following the same test design in Section S2, we used all the target compound subsets (ranging from single compounds to all 13 compounds) for a total of $9 \times \sum_{i=1}^{13} [C(13, i)] = 73,719$ tests. All peaks in the validation tests were correctly identified with the RTT matching approach.

Section S5. Chromatogram aligning enabled by RTT matching

In the main text, we mainly discuss the concept of RTT matching and its application in peak identification for chromatographic analysis. For visualization purposes, the RTT matching approach is also useful for chromatography profile aligning, which may be assisted by peak reconstruction if needed.

Generally, most chromatogram profile aligning approaches involve selection or generation of a reference chromatogram. All other sample chromatograms are aligned with the reference chromatogram and peaks of the same compound are aligned to the RT in the reference chromatogram. Herein, any RTT_{lib} can be chosen as the reference to extract RTs of target compounds (and internal standards if present). The peaks in the sample chromatogram are first identified with RTT matching and each peak can be shifted to the corresponding RTs in the reference chromatogram.

To eliminate the influence of baseline drifting on the peak profile, the sample chromatogram can be reconstructed by fitting each peak with an EMG model after baseline removal, smoothing and peak detection. Methods for each step can be found in Section S3. The aligned sample chromatogram is obtained by summation of all shifted EMG expressions. Illustration of RTT matching based chromatogram aligning is provided in Figure S11, where Chrom₁ was used as the reference chromatogram and two sample chromatograms were generated out of Chrom₈. Chrom_{sample1} was created through summation and reconstruction of all peaks in Chrom₈ via EMG, representing a sample with the same analyte composition as the reference chromatogram. Similarly, Chrom_{sample2} was reconstructed only with the peaks listed in Test 5 (Table 1B), representing a sample with only a subset of peaks in the reference chromatogram. Chrom_{sample1} and Chrom_{sample2} are plotted in Figure S11A together with Chrom₈, showing that all peak profiles and retention times are well preserved. Aligned chromatograms are shown in Figure S11B and C, together with the reference chromatogram (*i.e.*, Chrom₁), demonstrating excellent alignment between peaks of the same compounds.

Because peak RTs are the only input for the peak aligning, the RTT matching based chromatogram aligning completely avoids misaligning resulting from disparities in peak size, peak profile, and baseline drift, which are challenging for many other chromatogram aligning approaches to handle.

Figure S1. Conceptual illustration of the binning approach. (A) When drift of the same compound in two different chromatograms (red and blue), d_1 , is much smaller than the distance between two neighboring peaks in the same chromatogram, d_2 , peaks of the same compound can be well matched (that is, they are ended up in the same bin) via appropriate selection of the binning size. However, when d_1 and d_2 are comparable, as illustrated in (B) and (C), peak mismatch occurs regardless of the binning size. (B) A narrow binning size incorrectly places the peaks from different compounds (*e.g.*, the first peak of the blue chromatogram and the second peak in the red chromatogram) into the same bin. (C) A wide binning size incorporates multiple peaks into the same bin (*e.g.*, the second and the third peak in the red chromatogram), which reduces analysis resolution.

Figure S2. Rules to eliminate impossible $RTT_{samples}$. (A) Two examples (circled in red) of impossible $RTT_{samples}$, in which there is at least one vertical segment between two consecutive coordinates (black dots). A vertical segment means that one target compound is simultaneously assigned to multiple peaks in the chromatogram obtained from the sample under test. (B) Two examples (circled in red) of impossible $RTT_{samples}$ with an incorrect elution order, in which at least one segment between two consecutive coordinates (black dots) has a negative slope. (C) Only the coordinates (black dots) falling in the grey-shaded area need to be considered to expedite computation.

Figure S3. Use of internal standards. (A) Internal standards (grey crosses) divide the 2D diagram into multiple sub-sections (green regions). All possible $RTT_{samples}$ must go through the grey crosses. Therefore, only the black dots (coordinates) falling within these regions can be used to form possible RTT_{sample} candidates. (B) RT-based identification of a sample containing a single analyte is impossible, since the same RT value can also result from drifting neighboring peaks. In the examples presented here, the single peak in the sample chromatogram can be identified as the blue peak or red peak by the two chromatograms in the library. (C) Internal standards should be strategically positioned in the regions where variations in RTTs are more drastic. For example, Compound *I* is more effective than Compound *II* as an anchor for the trajectories because RTTs vary more significantly in the Compound *I* region than in the Compound *II* region.

Figure S4. Conceptual illustration of peak aligning with the internal standard based linear stretching/compressing approach using the RTT 2D diagram. (A) Retention times in the sample chromatogram and those in Chromatogram X (i.e., "reference chromatogram" used in the linear stretching/compressing approach) form the RTT_{sample} shown as the red curve. The first step of linear stretching/compressing is to connect the internal standards (solid gray crosses) using linear lines (marked as black straight lines). (B) The second step is to change the slope of those black lines to unity in order to match the retention times in the reference chromatogram (i.e., Chromatogram X). Note that in the RTT 2D diagram, Chromatogram X is represented by a straight line with a slope of one (see the blue line, where the internal standards are marked as small hollow gray crosses). The red arrows point to the warping direction (stretching or compressing). Stretching/compressing is easily interpreted as a slope change (*i.e.*, the slopes in the three segments are all changed to unity) in the RTT 2D diagram. (C) A new RTT_{sample} (red curve) is formed from the original RTT_{sample} in (A) after taking into account the slope change in each segment described in (B). Apparently, the new RTT_{sample} still does not overlap with the blue curve (*i.e.*, the reference chromatogram). Consequently, there still exist differences between the retention times in the sample chromatogram and those in the reference chromatogram, which leads to misidentification of the peaks in the sample chromatogram.

Figure S5. Retention time deviation (ΔRT) of Chrom₁₋₉ against the RT in Chrom₁. The X-axis represents the retention time obtained from Chrom₁. ΔRT along the Y-axis is obtained from the RT in Chrom₁₋₉ minus the RT of the same compound in Chrom₁. A positive (negative) deviation indicates that the corresponding compound elutes later (earlier) than in Chrom₁. $\Delta RT = 0$ for all compounds in Chrom₁. ΔRT for all chromatograms, except for Chrom₁, are highly non-linear.

Figure S6. Demonstration of RTT_{lib}s hybridization. (A) RTT library formed by experimentally generated RTT_{lib}s (RTT₁₋₆, red) and linearly hybridized RTT_{lib}s (black) based on RTT₁₋₆. (B) Corresponding retention time deviations (Δ RTs) against RTs in Chrom₁.

Figure S7. Illustration of algorithm validation tests design using Chrom₈. (A) Experimentally generated Chrom₈, where all target compounds and internal standards are present. Peak positions are marked with grey lines. Corresponding peak IDs are listed in the grey bar above. (B-E) Illustration of the peaks used in Tests 5-8 generated from Chrom₈. The red lines mark the peaks involved in the validation tests. The green lines mark the positions of the two internal standards. The red and green peaks are included in the sample under test. The peaks marked in grey are not included in the sample under test. Artificially added interferents are marked in blue.

Figure S8. Peak identification using COW aligning with a sample containing a subset of target compounds (Test 5). **(A)** Chrom₈ and Chrom_{sample} reconstructed from Chrom₈ with the peaks in Test 5. Peak retention times before aligning are listed in Table S2. Both peak positions and peak profiles are well preserved in Chrom_{sample} after reconstruction. The corresponding peak IDs are marked in the top blue bar. Chrom_{sample} is vertically shifted for clarity. **(B-E)** Reference chromatogram (*i.e.*, Chrom₁), unaligned Chrom_{sample}, and aligned Chrom_{sample} using various COW tuning parameters (slack and correlation power). Peak positions and corresponding peak IDs are labelled in the top grey bar. Multiple peaks are aligned to incorrect peaks in the reference chromatogram, leading to misidentification. Identification results are summarized in Table S4A. Unaligned Chrom_{sample} and aligned Chrom_{sample} are vertically shifted for clarity.

Figure S9. Peak identification using COW aligning with a sample containing a subset of target compounds plus one interferent (Test 7). (A) Chrom₈ and Chrom_{sample} reconstructed from Chrom₈ with the target peaks in Test 7. One interferent peak is artificially added at 340 s with its peak profile generated by an EMG. Peak retention times before aligning are listed in Table S2. Both peak positions and peak profile are well preserved for the target compounds in Chrom_{sample} after the reconstruction. The corresponding peak IDs are marked in the blue bar above. Chrom_{sample} is vertically shifted for clarity. (B-E) The reference chromatogram (*i.e.*, Chrom₁), unaligned Chrom_{sample}, and aligned Chrom_{sample} using various COW tuning parameters (slack and correlation power). Peak positions and corresponding peak IDs are labelled in the top grey bar. Multiple peaks are aligned to the incorrect peaks in the reference chromatogram, leading to misidentification. Identification results are summarized in Table S4B. Unaligned Chrom_{sample} and aligned Chrom_{sample} are vertically shifted for clarity.

Figure S10. Fruit metabolomics chromatograms for RTT peak identification verification. Chromatograms plotted in red are used for RTT library construction and blue ones are used for verification tests design. The orange dots mark the peaks that are treated as target compounds. The green triangles mark the peaks used as internal standards. (A) A pooled sample used as QC during the apple extracts measurement. (B) Component 7 of carotenoids in grape samples. A detailed sample description can be found in Ref. 7.

Figure S11. Chromatogram aligning enabled by RTT matching. (A) Two sample chromatograms (Chrom_{sample1} and Chrom_{sample2}) generated from Chrom₈. Chrom_{sample1} is reconstructed by fitting all peaks in Chrom₈ with EMGs, whereas Chrom_{sample2} only keeps the peaks listed in Test 5. Both retention times and peak profiles are well preserved for all target compounds in Chrom_{sample} after reconstruction. (B) and (C) Sample chromatograms (Chrom_{sample1} and Chrom_{sample2}) before and after the alignment. Chrom₁ is used as the reference chromatogram to extract peak RTs for alignment.

Retention Time (sec)	Compound ID	Compound Name
13.9	1	Unknown
19	2	1,1-Dichloroethene
23.7	3	Unknown
33.6	4	cis-1,2-Dichloroethene
43.9	5	Benzene
53.6	6	Trichloroethylene
86.2	7	cis-1,3-Dichloropropene
94.4	8	Toluene
109.2	9	Tetrachloroethylene
115.9	10	trans-1,3-Dichloropropene
140.2	11	1,2-Dibromoethane
184.8	12	Chlorobenzene
196.5	13	Ethylbenzene
214.4	14	<i>m,p</i> -Xylene
265.2	15	o-Xylene
275.8	std_1	Styrene
382.1	16	1,3,5-Trimethylbenzene
413.4	17	1,2,4-Trimethylbenzene
429.3	18	1,3-Dichlorobenzene
441.8	19	1,4-Dichlorobenzene
490.5	std_2	1,2-Dichlorobenzene
617.6	20	Hexachloro-1,3-Butadiene

Table S1. Peak retention times, assigned compound IDs, and compound names in Chrom₁. The same elution order holds for all chromatograms discussed in this work.

		Retent	ion tin	ne (sec)	8	7.9	111.4	4	218.	6	340		384.8	3	432	2.6
		Con	npoun	d ID		7	9		14		Interfe	rent	16		1	8
	7	Ranking	MSR	Accuracy			In	divid	lual pea	ık ide	ntifica	tion r	esult			
	Cest	1 st	2.99	100%		7	9		14		Interferent		16			8
	L	2 nd	3.74	100%		7	9		14		Interfe	rent	16		1	8
		3 rd	4.28	100%		7	9		14		Interfe	rent	16		1	8
m ₈		4 th	7.14	83.3%		7	10*		14		Interfe	rent	16		1	8
hro		Retent	ion tin	ne (sec)	8	7.9	111.4	4	218.	6	384.	8	432.6	5	44	19
m C		Con	Compound ID			7	9		14		16		18		Interferen	
l fro	8	Ranking	MSR	Accuracy			In	divid	lual pea	ık ide	ntifica	tion r	esult			
rate	lest	1 st	2.99	100%		7	9		14		16		18		Interf	ferent
enel	Ľ	2 nd	3.74	100%		7	9		14		16		18		Interf	ferent
ita g		3 rd	4.11	83.3%		7	9		14		16		18		19)*
st da		4 th	4.28	100%		7	9		14		16		18		Inter	ferent
Teg		Retent	ion tin	ne (sec)	34.1	44.6	62	96.2	2 111.4	142.9	9 188.4	218.6	384.8	3	95	432.6
		Con	npoun	d ID	4	5	interferent	8	9	11	12	14	16	inter	ferent	18
	6	Ranking	MSR	Accuracy			In	divid	lual pea	ık ide	ntifica	tion r	esult			
	est	1 st	2.42	100%	4	5	interferent	8	9	11	12	14	16	inter	ferent	18
	L	2^{nd}	2.86	100%	4	5	interferent	8	9	11	12	14	16	inter	ferent	18
		3 rd	3.34	100%	4	5	interferent	8	9	11	12	14	16	inter	ferent	18
		4 th	5.06	90.9%	4	5	interferent	8	10*	11	12	14	16 inte		ferent	18

Table S2. Algorithm validation tests and the corresponding peak identification results. The sample under test consists of both target compounds and interferents. Retention times for target compounds are generated from Chrom₈. An interferent at 340 s in Test 7 and at 449 s in Test 8 are added artificially. In Test 9, two interferents are artificially added at 62 s and 385 s. An asterisk "*" denotes peak misidentification.

-															0
		Rete	ntion tim	e (sec)	11.92	21.52	31.2	40.8	50	80.8	108.8	131.6	173.6	248.8	393.6
		C	ompound	ID	1	3	4	5	6	7	10	11	12	15	17
		Ranking	MSR	Accuracy		(v	Ind vith ex	lividua perim	al pea iental	ık ident Ily gene	tificati erated	ion re RTT _I	sult _{ib} s onl	y)	
		1^{st}	98.99	81.8%	1	3	4	5	6	7	9*	11	12	15	16*
		2^{nd}	99.13	72.7%	1	2*	4	5	6	7	9*	11	12	15	16*
	10	3 rd	101.48	81.8%	1	3	4	5	6	7	9*	11	12	15	16*
	Test	4 th	101.66	72.7%	1	2*	4	5	6	7	9*	11	12	15	16*
6u		Ranking	MSR	Accuracy	(wit	th botl	Ind 1 expe	lividu: rimen	al pea tally	ik ident genera	tificati ted an	ion re d hyb	sult ridize	d RTT	Г _{lib} s)
ILON		1 st	1.13	100%	1	3	4	5	6	7	10	11	12	15	17
l Ch		2 nd	2.55	90.9%	1	2*	4	5	6	7	10	11	12	15	17
rom		3 rd	3.16	90.9%	1	3	4	5	6	7	9*	11	12	15	17
ed f		4 th	3.29	90.9%	2*	3	4	5	6	7	10	11	12	15	17
a		Retention time (sec)			31.	2	50.1	88	.6	108.6	17	3.5	248.8	3 4	19.1
ner				- (····)											
gener		C	ompound	ID	4		6	8		10	1	2	15		19
t data gener		Co Ranking	ompound MSR	ID Accuracy	4	(v	6 Ind vith ex	8 lividua perim	al pea ienta	10 1k ident Ily gene	1 tificati erated	2 ion re RTT	15 sult ibs onl	y)	19
Test data gener		Co Ranking 1 st	ompound MSR 121.41	ID Accuracy 57.1%	4	(v	6 Ind vith ex 6	8 lividu: sperim 7 ³	al pea ienta *	10 1k ident 1ly gene 9*	tificati erated	2 ion re RTT ₁ 2	15 sult _{ib} s onl 15	y)	19 17*
Test data gener		Conception Concepti Conception Conception Conception Conception Conception Co	mpound MSR 121.41 122.28	ID Accuracy 57.1% 57.1%	4	(v	6 Ind vith ex 6 6	8 lividu: perim 7 ³ 7 ³	al pea iental * *	10 hk ident lly gene 9* 9*	tification tification terated	2 ion re RTT 2 2	15 sult ibs onl 15 15	y)	19 17* 18*
Test data gener	t 11	Conception Concepti Conception Conception Conception Conception Conception Co	mpound MSR 121.41 122.28 122.76	ID Accuracy 57.1% 57.1% 71.4%	4 4 4 4	(v	6 Ind vith ex 6 6 6	8 ividua perim 7 ³ 7 ³ 8	al pea ienta * *	10 1k ident 1ly gene 9* 9* 9*	tification erated	2 ion re RTT 2 2 2 2	15 sult ibs onl 15 15 15	y)	19 17* 18* 17*
Test data gener	Test 11	Control Ranking 1 st 2 nd 3 rd 4 th	ompound MSR 121.41 122.28 122.76 123.63	ID Accuracy 57.1% 57.1% 71.4% 71.4%	4 4 4 4 4	(V	6 Ind vith ex 6 6 6 6 6	8 ividua perim 7 [;] 7 [;] 8 8	al pea ienta * *	10 ik ident 1y gene 9* 9* 9* 9* 9*	tification erated 1 1 1	2 ion re RTT 2 2 2 2 2 2	15 sult <u>ibs onl</u> 15 15 15 15	y)	19 17* 18* 17* 18*
Test data gener	Test 11	ContractRanking1st2nd3rd4thRanking	ompound MSR 121.41 122.28 122.76 123.63 MSR	ID Accuracy 57.1% 57.1% 71.4% 71.4% Accuracy	4 4 4 4 (wit	(v 	6 Ind vith ex 6 6 6 6 6 Ind n expe	8 sperim 7 7 8 8 8 8 8 1 ividua	al pea ienta * * * al pea tally	10 ik ident 9* 9* 9* 9* 9* ik ident genera	tificati erated 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 ion re RTT 2 2 2 2 2 ion re d hyb	15 sult 15 15 15 15 15 15 sult ridized	y)	19 17* 18* 17* 18* 5(hibs)
Test data gener	Test 11	Control Contro	ompound MSR 121.41 122.28 122.76 123.63 MSR 1.64	ID Accuracy 57.1% 57.1% 71.4% 71.4% Accuracy 100%	4 4 4 4 (wit 4	(v	6 Ind vith ex 6 6 6 6 Ind 1 expe 6	sperim 7 ² 7 ³ 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	al pea ienta * * al pea tally	10 Ik ident 9* 9* 9* 9* 9* Ik ident generat 10	tificati erated 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 ion re RTT 2 2 2 2 2 2 ion re d hyb 2	15 sult 15 15 15 15 15 15 sult ridized 15	y)	19 17* 18* 17* 18* Г _{ііь} s) 19
Test data gener	Test 11	ContractRanking1st2nd3rd4thRanking1st2nd	ompound MSR 121.41 122.28 122.76 123.63 MSR 1.64 4.58	ID Accuracy 57.1% 57.1% 71.4% 71.4% Accuracy 100% 85.7%	4 4 4 4 (wit 4 4	(v	6 Ind vith ex 6 6 6 Ind n expe 6 6 6	8 ividua perim 7 ³ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	al pea ienta * * al pea tally	10 ik ident 9* 9* 9* 9* 9* ik ident generat 10 9*	tificati erated 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 ion re RTT 2 2 2 2 2 ion re d hyb 2 2 2	15 sult ibs onl 15 15 15 15 sult ridize 15 15	y)	19 17* 18* 17* 18* Гіњ s) 19 19
Test data gener	Test 11	$\begin{array}{c} Control Contr$	ompound MSR 121.41 122.28 122.76 123.63 MSR 1.64 4.58 7.38	ID Accuracy 57.1% 57.1% 71.4% 71.4% Accuracy 100% 85.7% 85.7%	4 4 4 4 (wit 4 4 4 4	(v	6 Ind vith ex 6 6 6 Ind n expe 6 6 6 6 6 6	8 ividua perim 7' 7' 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7'	al pea enta * * al pea tally	10 ik ident 9* 9* 9* 9* ik ident generat 10 9* 10	tificati erated 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 ion re RTT 2 2 2 2 2 ion re d hyb 2 2 2 2 2 2 2 2 2 2 2 2 2	15 sult ibs onl 15 15 15 15 sult ridized 15 15 15		19 17* 18* 17* 18* 17* 18* 19 19 19

Table S3. Algorithm validation tests and the corresponding peak identification results when a sample chromatogram has severe RT drift issues. Retention times for compounds in Test 9 and Test 10 were generated from Chrom9, which drift much more seriously than Chrom7-8 (see Figure S5). In each test, severe peak misidentification occurred when only the experimentally generated RTT_{lib}s (*i.e.*, Chrom1-6) were used. In contrast, when the RTT_{lib}s generated by the hybridization method were added, our approach could identify the peaks with 100% accuracy (at least for the top result with the smallest *MSR*). An asterisk "*" denotes peak misidentification.

1		`
	/ 🖪	
•		,

RT in Test 5 (sec)	87.9		111	.4	21	8.6	2	81.4	3	384.8		432.6	494.5
Compound ID	7		9		1	4	5	std ₁		16		18	std_2
Individual peak id	entification	COV	N alig	ning (slack	k=1, cor	rela	tion po	wei	r=1), Accu	iracy=0		
RT after aligning (see	:) 109.2	,	140	.2	26	5.2	4	49.5	4	497.1		497.1	575.7
Peak identification	9*		11*		1:	15*		terferent* Int		erferent*	Int	erferent*	Interferent*
Individual peak id	entificatio	1 re	sult w/	COV	N alig	ning (slack	x=2, cor	rela	tion po	wei	r=2), Accu	iracy=0
RT after aligning (see	e) 88.2	88.2		.9	26	5.2	3.	45.8	4	441.8		499.2	597.3
Peak identification	Interfere	nt*	10		1	5	Inter	ferent*		19*	Int	erferent*	Interferent*
Individual peak id	entificatio	n w	/ COW	/ alig	ning (slack=	=4, co	orrelatio	on p	ower=3), A	Accuracy=	=57.1%
RT after aligning (see	e) 86.2		109	.2	21	4.4	2	81.4	4	141.8		490.5	617.6
Peak identification	7		9		1	4	5	std1		19*		std ₂ *	20*
Individual peak ident	ification r	esul	lt w/ CO	OW a	alignir	ıg (sla	ck=6	, correl	atio	on powe	r= 4	l), Accura	cy=28.6%
RT after aligning (see		86.	2	19	6.5	2	81.4	429.3		490.5		617.6	
Peak identification	Interfere	nt*	7*	:	13*		5	std_1		18		std ₂ *	20*
(B)													
RT in Test 7 (sec)	87.9	1	11.4	21	8.6	281	.4	340		384.8		432.6	494.5
Compound ID	7		9]	14	std ₁		Interferent		16		18	std ₂
Individual peak i	dentificatio	n re	esult w/	COV	V alig	ning (s	alack=	=1, corre	elati	ion powe	er=	1), Accura	acy=0
RT after aligning (sec)	109.2	1	40.2	26	5.2	354	4.1	429.3	3	490.5		545.4	617.6
Peak identification	9*		11*	1	5*	Interfe	erent*	18*		std_2		Interferent*	⁴ 20
Individual peak i	dentificatio	on r	esult w/	COV	V aligr	ning (s	lack=	=2, corre	elati	on powe	er=2	2), Accura	icy=0
RT after aligning (sec)	88.5	1	15.9	26	5.2	341	.9	425.1	L	490.5		545	617.6
Peak identification	Interferent*		10*	1	5*	Interfe	erent*	Interfer	ent	std ₂ *		Interferent*	÷ 20*
Individual peak ide	entification	res	ult w/ C	COW	aligni	ng (sla	ack=4	l, correl	atio	n power	=3)), Accurac	y=50%
RT after aligning (sec)	86.2	1	09.2	21	4.4	275	5.8	382.1	l	441.8		490.5	617.6
Peak identification	7		9]	14	sto	1 ₁	16*		19*		std_2*	20*
Individual peak ide	ntification	resu	lt w/ C	OW :	alignir	ng (sla	ck=6,	correla	tion	n power=	=4),	Accuracy	=12.5%
RT after aligning (sec)	64.7	1	86.2	19	06.5	271	.8	394.7	7	441.8		490.5	617.6
Peak identification	Interferent*		7*	1	3*	Interfe	erent*	Interfer	ent	19*		std_2^*	20*

Table S4. Peak identification performance comparison with COW using Test 5 in Table (A) and Test 7 in Table (B). Chrom₁ was treated as the reference chromatogram for other chromatograms (*i.e.*, sample chromatograms) to align with. The two sample chromatograms (*i.e.*, Chrom_{samples}), with or without interferent, were generated from Chrom₈, as shown in Figures S8A and S9A. RTs and corresponding compound IDs are listed in the first two rows in each table. Peak identifications and RTs after COW with various parameters are summarized in the remaining rows. An asterisk "*" denotes peak misidentification.

	RT before aligning (sec)	87.9	111.4	218.6	5	281.	4	384	.8	432	2.6	49	94.5
	Compound ID	7	9	14		std ₁	L	16		1	8	S	td ₂
Test 5	In Same inte	dividual pe ernal stand	eak identif lards (std1	ication re and std ₂)	sult are	: with li adopt	inear ed, A	warp ccura	oing acy=2	28.6%	, D		
	RT after aligning (sec)	86.15	109.18	214.3	3	275.	8	380	.0	423	8.1	49	0.5
	Peak identification	Interferent*	* Interferen	t* Interfere	nt*	std ₁	ı Iı	nterfei	ent*	Interf	erent*	S	td ₂
	RT before aligning (sec)	87.9	111.4	218.6	2	81.4	34	40	38	4.8	432	2.6	494.5
	Compound ID	7	9	14		std ₁	Interf	ferent	1	6	18	8	std_2
st 7	In	dividual pe	eak identif	ication re	sult	with li	inear	warp	ing				
Te	Same int	ternal stan	dards (std	1 and std2) ar	e adop	ted, A	Accur	acy=	25%			
-	RT after aligning (sec)	86.315	109.18	214.3	2	75.8	334	1.84	38	0.0	428	3.1	490.5
	Peak identification	Interferent*	Interferent*	Interferent*	1	std ₁	Interfe	erent*	Interf	erent*	Interfe	rent*	std ₂

Table S5. Peak identification performance comparison with internal standard based linear warping using Tests 5 and 7. The same internal standards (*i.e.*, std₁ and std₂) were used for both tests. Chrom₁ was treated as the reference chromatogram. The sample chromatogram peak list (*i.e.*, Chrom_{sample}) was generated from Chrom₈. Corresponding compound IDs are listed in the first two rows of each table. Peak identifications and RTs after linear warping are summarized in the remaining rows. An asterisk "*" denotes peak misidentification.

4	•	
	J	
	١	A)

Compound	Refe	rence			Chrom8				Chrom9	
ID	RT	Peak height	RT	Peak height	Warped RT, Order=2	Warped RT, Order=3	RT	Peak height	Warped RT, Order=2	Warped RT, Order=3
1	13.9	17.65	14.1	18.37	14.14	14.42	11.9	2.36	12.47	11.26
2	19	15.86	19.2	12.44	19.11	19.34	17.3	7.06	18.27	17.17
3	23.7	12.73	23.9	10.50	23.69	23.88	21.5	2.52	22.78	21.76
4	33.6	16.69	34.1	12.33	33.63	33.73	31.2	7.43	33.19	32.35
5	43.9	19.63	44.6	13.72	43.87	43.90	40.9	9.08	43.59	42.91
6	53.6	18.72	54.6	13.24	53.63	53.60	50.1	8.49	53.44	52.90
7	86.2	14.21	87.9	11.26	86.20	86.02	80.8	3.90	86.26	86.07
8	94.4	16.72	96.2	12.38	94.33	94.13	88.6	6.45	94.58	94.46
9	109.2	15.85	111.4	12.11	109.23	109.00	102.8	5.20	109.72	109.69
10	115.9	14.04	118.2	11.17	115.90	115.66	108.6	3.87	115.90	115.90
11	140.2	13.45	142.9	11.12	140.16	139.93	131.6	2.74	140.36	140.45
12	184.8	15.31	188.4	11.80	184.98	184.83	173.5	4.84	184.80	184.89
13	196.5	14.65	200.4	11.54	196.82	196.71	184.5	4.29	196.44	196.50
14	214.4	17.94	218.6	13.11	214.81	214.76	201.4	6.84	214.29	214.30
15	265.2	14.18	270.3	11.43	266.04	266.22	248.8	3.80	264.22	264.02
std1	275.8	14.35	281.4	11.38	277.06	277.30	258.6	3.95	274.52	274.26
16	382.1	16.02	384.8	12.06	380.20	380.88	367.8	6.01	388.61	387.89
17	413.4	14.79	416.6	11.70	412.08	412.84	393.7	4.41	415.50	414.77
18	429.3	15.38	432.6	12.09	428.15	428.93	407.7	4.56	430.00	429.30
19	441.8	15.26	445.4	12.11	441.02	441.80	419.1	4.36	441.80	441.13
std2	490.5	14.00	494.5	11.64	490.50	491.20	464.5	3.36	488.66	488.31
20	617.6	13.86	620.3	11.89	618.09	617.60	588.1	2.76	615.21	617.60

(B)															
		CompoundID	7	1	9		1	4	stc	11		16	1	8	std2
		RT	87	.9	111	.4	21	8.6	281	0.1	3	84.6	43	2.4	494.3
	st 5	Peak height	0.6	54	1.4	9	2.	34	0.5	0.50		1.11		07	0.62
	Tee	Warped RT, Order=2	59.	10	86.20		206	5.67	274.11		381.95		429	9.96	490.50
om 8		Warped RT, Order=3	239	.66	109.20		28.	.11	196.50		429.30		386	5.54	68.11
hre		CompoundID	7		9		14	st	d1	interf	erent	16		18	std2
0		RT	87.	9	111.4		218.6	28	1.0	34	0.0	384.6		432.4	494.3
	Test 7	Peak height	0.64		1.49		2.34	0.	50	0.	92	1.11		1.07	0.62
		Warped RT, Order=2	59.0	94	86.20	2	206.86	274	1.33	336	5.36	382.10) 4	430.03	490.41
		Warped RT, Order=3	121.	10	86.20		23.70	52	.08	115	5.90	184.85	5 2	275.80	415.47
		CompoundID	1	3	4	5	6	7	10	11	12	15	std1	. 17	std2
		RT	11.9	21.5	31.2	40.9	50.1	80.8	108.6	131.	6 173.	5 248.8	258.	6 393.7	464.5
	t 1(Peak height	2.36	2.52	7.43	9.08	8.49	3.90	3.87	2.74	4.84	4 3.80	3.95	5 4.41	3.36
	Tes	Warped RT, Order=2	-0.46	10.85	22.25	33.60	44.33	3 79.88	111.73	3 137.8	33 184.8	30 267.3	5 277.9	91 419.43	490.50
0 m 9		Warped RT, Order=3	273.93	181.38	109.20	56.76	23.70) 11.71	96.76	206.0)6 416.4	46 441.8	0 378.4	3-3416.8	6 -8571.08
hr		CompoundID	4		6	8		10	1	2	15	st	d1	19	std2
	1	RT	31.2	2	50.1	88.	6	108.6	17.	3.5	248.8	3 25	8.6	419.1	464.5
	t 1.	Peak height	7.43		8.49	6.4	5	3.87	4.	84	3.80	3.	95	4.36	3.36
	Tes	Warped RT, Order=2	21.0	6	43.90	89.4	19	112.67	185	.59	265.7	2 275	5.80	429.28	468.75
		Warped RT, Order=3	19.0	0	43.61	91.8	34	115.90	189	.44	266.4	2 27	5.80	410.06	441.80

Table S6. Peak identification performance comparison with fast PTW. The full peak list in Chrom₁ is treated as a reference for alignment. PTW warping functions are applied with order 2 and 3. All retention times in the table are provided in seconds. Table (A) summarizes the full peak lists (retention times and peak heights) in Chrom₁, Chrom₈, and Chrom₉, as well as warped retention times. The retention time of each compound after warping is close to that in the reference (with a difference of a fraction of a second to a few seconds). Table (B) summarizes the subset peak lists in Tests 5 and 7 (generated out of Chrom₈), and Tests 10 and 11 (generated out of Chrom₉), as well as warped retention times. The retention time of a compound after warping deviates significantly from that in the reference (by a fraction of a second to hundreds of seconds), suggesting that the fast PTW may not be able to handle the situation when only a subset of the target compounds is present in the sample.

References

- (1) Nielsen, N. P. V.; Carstensen, J. M.; Smedsgaard, J. Aligning of Single and Multiple Wavelength Chromatographic Profiles for Chemometric Data Analysis Using Correlation Optimised Warping. J. Chromatogr. A **1998**, 805 (1–2), 17–35.
- (2) Tomasi, G.; Van Den Berg, F.; Andersson, C. Correlation Optimized Warping and Dynamic Time Warping as Preprocessing Methods for Chromatographic Data. *J. Chemom.* **2004**, *18* (5), 231–241.
- (3) Zhang, Z. M.; Chen, S.; Liang, Y. Z. Baseline Correction Using Adaptive Iteratively Reweighted Penalized Least Squares. *Analyst* **2010**, *135* (5), 1138–1146.
- (4) Cleveland, W. S.; Devlin, S. J. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. *J. Am. Stat. Assoc.* **1988**, *83* (403), 596–610.
- (5) Morris, J. S.; Coombes, K. R.; Koomen, J.; Baggerly, K. A.; Kobayashi, R. Feature Extraction and Quantification for Mass Spectrometry in Biomedical Applications Using the Mean Spectrum. *Bioinformatics* **2005**, *21* (9), 1764–1775.
- (6) Lee, J.; Zhou, M.; Zhu, H.; Nidetz, R.; Kurabayashi, K.; Fan, X. Fully Automated Portable Comprehensive 2-Dimensional Gas Chromatography Device. *Anal. Chem.* 2016, 88 (20), 10266–10274.
- (7) Wehrens, R.; Bloemberg, T. G.; Eilers, P. H. C. Fast Parametric Time Warping of Peak Lists. *Bioinformatics* **2015**, 31, 3063–3065.